Patents Assigned to Novx Systems, Inc.
-
Patent number: 7767620Abstract: The present invention provides a synthetic strategy for creating a new class of materials called hybrid mesoporous, macroporous, or mesoporous-macroporous organometaloxide materials, exemplified but not limited to hybrid mesoporous organosilicas. This strategy involves taking a pre-assembled mesoporous material having a porous framework and then attaching an organic, inorganic or biological guest molecule to the pore walls of the framework material through two or more chemical linkages. The unusual combination of inorganic and organic components organized into a material with mesoscale porosity and having bridge bonded organic, organometallic, or biological functionalized surfaces suggests a myriad of uses for these composite materials, such as the controlled release and uptake of chemicals and drugs, chiral separations and catalysis, electronic printing and microelectronic packaging, thermal and acoustical insulation.Type: GrantFiled: March 16, 2005Date of Patent: August 3, 2010Assignee: Novx Systems Inc.Inventors: Wesley Whitnall, Tewodros Asefa, Geoffrey Alan Ozin
-
Patent number: 7723127Abstract: The present invention provides a method of performing a competitive assay for the detection and quantification of an analyte over an extended dynamic range. This is achieved by a multi-step sample addition method whereby different concentrations of sample are added at different times during the assay that produces a dose-response curve with multiple windows of detection. This multi-step sample addition method causes the dose-response curve of the composite assay to broaden, dramatically increasing the assay dynamic range.Type: GrantFiled: March 3, 2005Date of Patent: May 25, 2010Assignee: Novx Systems Inc.Inventors: Samad Talebpour, Stephen W. Leonard
-
Patent number: 7595881Abstract: An optical system is provided for achieving enhanced rejection of scattered excitation light and superior signal-to-noise performance when reading microplate wells. The optical system uses an axial configuration in which the excitation beam incident upon the sample propagates along the axis of the microplate well. Excitation light from a light source, such as a lamp or fiber optic bundle, is collimated into a beam using a lens. A reflective pick-off mirror is then used to reflect the collimated excitation beam upward along the well axis. A focusing lens, with a diameter exceeding the diameter of the collimated excitation beam, is used to focus the excitation beam in the well. The same broad lens is used to collimate the emitted fluorescent light, of which a large percentage propagates axially past the pick-off mirror towards a second focusing lens that focuses the emission beam onto the face of a fiber optic bundle.Type: GrantFiled: December 6, 2007Date of Patent: September 29, 2009Assignee: Novx Systems Inc.Inventors: Stephen W. Leonard, Ming Gang Xu
-
Patent number: 7324202Abstract: An optical system is provided for achieving enhanced rejection of scattered excitation light and superior signal-to-noise performance when reading microplate wells. The optical system uses an axial configuration in which the excitation beam incident upon the sample propagates along the axis of the microplate well. Excitation light from a light source, such as a lamp or fiber optic bundle, is collimated into a beam using a lens. A reflective pick-off mirror is then used to reflect the collimated excitation beam upward along the well axis. A focusing lens, with a diameter exceeding the diameter of the collimated excitation beam, is used to focus the excitation beam in the well. The same broad lens is used to collimate the emitted fluorescent light, of which a large percentage propagates axially past the pick-off mirror towards a second focusing lens that focuses the emission beam onto the face of a fiber optic bundle.Type: GrantFiled: December 7, 2004Date of Patent: January 29, 2008Assignee: Novx Systems Inc.Inventors: Stephen W. Leonard, Ming Gang Xu
-
Patent number: 7302179Abstract: The present invention provides methods and devices for optical performance monitoring using co-located switchable fiber Bragg gratings (FBGs) in conjunction with a few detectors. This arrangement combines the merit of both tunable FBG filters and discrete detectors to achieve high spectral resolution, fast detection process and great dynamic range. By using parallel co-located FBGs in conjunction with a banded architecture, the tuning range of each FBG becomes much smaller (equivalent of ˜0.08% strain). As a result, not only does the update speed of the spectral characteristics for each channel become much faster, but it effectively eliminates the concern of FBG long-term reliability as well.Type: GrantFiled: November 17, 2003Date of Patent: November 27, 2007Assignee: Novx Systems, Inc.Inventors: Tino Alavie, Keith Beckley, Stephen Leonard, Ming Gang Xu