Patents Assigned to NthDegree Technologies Worldwide Inc.
  • Patent number: 10201051
    Abstract: An LED module is disclosed containing an integrated MOSFET driver transistor in series with an LED. In one embodiment, GaN-based LED layers are epitaxially grown over an interface layer on a silicon substrate. The MOSFET gate is formed in a trench in the silicon substrate and creates a vertical channel between a top source and a bottom drain when the gate is biased to turn on the LED. A conductor on the die connects the MOSFET in series with the LED. One power electrode is located on a top of the die, another power electrode is located on the bottom of the die, and the gate electrode may be on the top or the side of the die.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: February 5, 2019
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventor: Richard A. Blanchard
  • Patent number: 10192478
    Abstract: Pixel locations in an addressable display are defined by metal landings on a top surface of a flexible substrate, such as by depositing a metal film and etching the film. The substrate surface may be hydrophobic so that the hydrophobic surface is exposed between the metal landings. The substrate has conductive vias that connect the metal landings to traces on a bottom surface of the substrate for connection to addressing circuitry. LED ink is then blanket-printed over the top surface and cured to electrically connect bottom electrodes of the LEDs to the metal landings. LEDs that fall between the landings are ineffective. A dielectric layer is blanket-printed which exposes the top electrodes, and a transparent conductor layer is blanket-printed over the LEDs to connect all LEDs associated with an individual pixel location in parallel. Accordingly, all printed steps can be performed without any alignment.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: January 29, 2019
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventor: Brian D. Ogonowsky
  • Patent number: 10161615
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: December 25, 2018
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw, Mark Allan Lewandowski, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 10018449
    Abstract: An active target has a target face that is backlit by LEDs, where a detection layer behind the target face detects a new projectile hole in the target, such as from a gun or an arrow. The detection layer may be formed of one or more resistive layers, and the detected increase in resistance due to a new projectile hole being created is sensed and correlated to an XY position of the hole. The location of the new hole is transmitted via an RF signal to the shooter's portable device, such as a smartphone, and the shooter sees the location of the hit relative to the target face in real time. The LEDs may be dynamically controlled. The target is disposable and is supported by a support base containing the control electronics and transmitter.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: July 10, 2018
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Jeffrey Baldridge, Alexander Ray, Bradley Whaley, Darin Wagner, Neil O. Shotton, Richard A. Blanchard, Shelby Jueden, Steven Roach, Larry Todd Biggs, Eric Kahrs
  • Patent number: 9993875
    Abstract: Systems and methods for fabricating nanostructures using other nanostructures as templates. A method includes mixing a dispersion and a reagent solution. The dispersion includes nanostructures such as nanowires including a first element such as copper. The reagent solution includes a second element such as silver. The second element at least partially replaces the first element in the nanostructures. The nanostructures are optionally washed, filtered, and/or deoxidized.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: June 12, 2018
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE, INC.
    Inventors: Vera N. Lockett, Mark D. Lowenthal, William J. Ray, John Gustafson
  • Publication number: 20180102457
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Applicants: NthDegree Technologies Worldwide Inc., U.S. Government as represented by the Administrator of the National Aeronautics and Spac
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 9913371
    Abstract: A programmable circuit includes an array of printed groups of microscopic transistors or diodes. The devices are pre-formed and printed as an ink and cured. A patterned hydrophobic layer defines the locations of the printed dots of the devices. The devices in each group are connected in parallel so that each group acts as a single device. Each group has at least one electrical lead that terminates in a patch area on the substrate. An interconnection conductor pattern interconnects at least some of the leads of the groups in the patch area to create logic circuits for a customized application of the generic circuit. The groups may also be interconnected to be logic gates, and the gate leads terminate in the patch area. The interconnection conductor pattern then interconnects the gates for form complex logic circuits.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 6, 2018
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Richard Austin Blanchard, Mark David Lowenthal, Bradley Steven Oraw
  • Patent number: 9865767
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Grant
    Filed: January 9, 2016
    Date of Patent: January 9, 2018
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 9777914
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 3, 2017
    Assignee: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw, Mark Allan Lewandowski, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 9780270
    Abstract: An initially flat light sheet is formed by printing conductor layers and microscopic LEDs over a flexible substrate to connect the LEDs in parallel. The light sheet is then subjected to a molding process which forms 3-dimensional features in the light sheet, such as bumps of any shape. The features may be designed to create a desired light emission profile, increase light extraction, and/or create graphical images. In one embodiment, an integrated light sheet and touch sensor is formed, where the molded features convey touch positions of the sensor. In one embodiment, a curable resin is applied to the light sheet to fix the molded features. In another embodiment, optical features are molded over the flat light sheet. In another embodiment, each molded portion of the light sheet forms a separate part that is then singulated from the light sheet.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: October 3, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Eric William Kahrs, Bradley Steven Oraw
  • Patent number: 9661716
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: May 23, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Patent number: 9657903
    Abstract: A method of forming a light sheet includes depositing a reflective conductor layer over a substrate, printing a layer of microscopic inorganic LEDs on the conductor layer, depositing a first dielectric layer, having a first index of refraction, over the conductor layer and along sidewalls of the LEDs, and depositing a transparent conductor layer over the LEDs so that the LEDs are connected in parallel. The transparent conductor layer may be a wire mesh with openings. A liquid or paste polymer layer is then deposited over the transparent conductor layer and directly contacts the first dielectric layer. The indices of refraction of both layers are similar to reduce TIR. The top surface of the polymer layer is then molded to contain light extraction features to reduce waveguiding in the light sheet. In another embodiment, the substrate surface is the light exit surface that has the light extraction features.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: May 23, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley Steven Oraw
  • Patent number: 9577007
    Abstract: An LED module is disclosed containing an integrated driver transistor (e.g, a MOSFET) in series with an LED. In one embodiment, LED layers are grown over a substrate. The transistor regions are formed over the same substrate. After the LED layers, such as GaN layers, are grown to form the LED portion, a central area of the LED is etched away to expose a semiconductor surface in which the transistor regions are formed. A conductor connects the transistor in series with the LED. Another node of the transistor is electrically coupled to an electrode on the bottom surface of the substrate. In one embodiment, an anode of the LED is connected to one terminal of the module, one current carrying node of the transistor is connected to a second terminal of the module, and the control terminal of the transistor is connected to a third terminal of the module.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 21, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Richard Austin Blanchard, Bradley Steven Oraw
  • Patent number: 9572249
    Abstract: A programmable circuit includes an array of printed groups of microscopic transistors or diodes. The devices are pre-formed and printed as an ink and cured. The devices in each group are connected in parallel so that each group acts as a single device. In one embodiment, about 10 devices are contained in each group so the redundancy makes each group very reliable. Each group has at least one electrical lead that terminates in a patch area on the substrate. An interconnection conductor pattern interconnects at least some of the leads of the groups in the patch area to create logic circuits for a customized application of the generic circuit. The groups may also be interconnected to be logic gates, and the gate leads terminate in the patch area. The interconnection conductor pattern then interconnects the gates for form complex logic circuits.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: February 14, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Richard Austin Blanchard, Mark David Lowenthal, Bradley Steven Oraw
  • Patent number: 9572222
    Abstract: LED modules are disclosed having a control MOSFET, or other transistor, in series with an LED. In one embodiment, a MOSFET wafer is bonded to an LED wafer and singulated to form thousands of active 3-terminal LED modules with the same footprint as a single LED. Despite the different forward voltages of red, green, and blue LEDs, RGB modules may be connected in parallel and their control voltages staggered at 60 Hz or greater to generate a single perceived color, such as white. The RGB modules may be connected in a panel for general illumination or for a color display. A single dielectric layer in a panel may encapsulate all the RGB modules to form a compact and inexpensive panel. Various addressing techniques are described for both a color display and a lighting panel. Various circuits are described for reducing the sensitivity of the LED to variations in input voltage.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 14, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Bradley S. Oraw
  • Patent number: 9548511
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 17, 2017
    Assignee: NthDegree Technologies Worldwide Inc.
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Patent number: 9534772
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Grant
    Filed: June 7, 2015
    Date of Patent: January 3, 2017
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw, Mark Allan Lewandowski, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 9525097
    Abstract: A PV module is formed having an array of PV cells, where the cells are separated by gaps. Each cell contains an array of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The diodes and conductor layers may be patterned by printing. A continuous metal substrate supports the diodes and conductor layers in all the cells. A dielectric substrate is laminated to the metal substrate. Trenches are then formed by laser ablation around the cells to sever the metal substrate to form electrically isolated PV cells. A metallization step is then performed to connect the cells in series to increase the voltage output of the PV module. An electrically isolated bypass diode for each cell is also formed by the trenching step. The metallization step connects the bypass diode and its associated cell in a reverse-parallel relationship.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 20, 2016
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Tricia Youngbull, Bradley Steven Oraw, William Johnstone Ray
  • Patent number: 9526148
    Abstract: An exemplary system comprises a power regulator and an emitting apparatus. The emitting apparatus is typically attached to or integrated with a display object, such as a merchandise package or container. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a first primary inductor voltage. The emitting apparatus comprises an illumination source and a secondary inductor coupled to the illumination source. The illumination source is adapted to emit visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor. In exemplary embodiments, the first and second inductors are substantially planar.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: December 20, 2016
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, William Johnstone Ray, Peter Michael Bray, David R. Bowden
  • Patent number: 9520598
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: December 13, 2016
    Assignee: NthDegree Technologies Worldwide Inc.
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray