Patents Assigned to NTI AG
  • Publication number: 20240014724
    Abstract: A constant force generator comprises a stator having a longitudinal axis and a permanently magnetic stator region, and an armature arranged to be movable relative to the stator in the direction of the longitudinal axis, the armature having a permanently magnetic armature region. The permanently magnetic stator region and the permanently magnetic armature region are each magnetised in a magnetisation direction perpendicular to the direction of the longitudinal axis. The permanently magnetic armature region has a first sub-region which has a magnetisation having a net magnetisation component in a direction opposite to the magnetisation direction of the permanently magnetic stator region, so that in the case of an only partly overlapping arrangement of the first sub-region and the permanently magnetic stator region, the net force component has a repulsive net force component which repels the armature away from the stator in the direction of the longitudinal axis.
    Type: Application
    Filed: July 3, 2023
    Publication date: January 11, 2024
    Applicant: NTI AG
    Inventors: Ronald ROHNER, Daniel AUSDERAU
  • Patent number: 11381146
    Abstract: In a drive device having a tubular linear motor with a stator (1), an armature (2) and a bottom flange (30), the stator (1) is arranged on the bottom flange (30) in thermal contact with the bottom flange (30). The stator (1) is fluid-tightly enclosed by stainless steel. The bottom flange (30) consists at least partly of a material having a higher thermal conductivity than stainless steel. The stator (1), together with the bottom flange (30), is enclosed by a casing (40) made of stainless steel which is in thermal contact with the bottom flange (30) and encloses the bottom flange (30) and the stator (1) in common. The stator (1) is a tubular stator (1) having drive coils (12) arranged therein and also having a longitudinal axis and a through-hole (11) which extends through the tubular stator (1) coaxially with the longitudinal axis.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 5, 2022
    Assignee: NTI AG
    Inventor: Ronald Rohner
  • Patent number: 10686353
    Abstract: A rotary lifting device comprises a rotary lifting shaft having a longitudinal axis, a linear motor for moving the rotary lifting shaft in the direction of its longitudinal axis, and a rotary motor for rotating the rotary lifting shaft about its longitudinal axis. The rotary motor has a stator and a hollow rotor, through which the rotary lifting shaft extends. The hollow rotor is rotationally kinematically coupled to the rotary lifting shaft. The linear motor is arranged stationary relative to the rotary motor and has an armature having a motion axis along which the armature is supported so as to be linearly movable. The armature is kinematically coupled to the rotary lifting shaft with respect to the movement of the rotary lifting shaft in the direction of its longitudinal axis at a first longitudinal end of the rotary lifting shaft.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: June 16, 2020
    Assignee: NTI AG
    Inventor: Ronald Rohner
  • Patent number: 9590471
    Abstract: A rotary lifting device comprises an actuator shaft, a linear motor and a rotary motor for moving and rotating the actuator shaft about the longitudinal axis thereof. The rotary motor has a hollow rotor, through which the actuator shaft extends and which is kinematically coupled to the actuator shaft in terms of rotation. The linear motor has an armature coaxially arranged with respect to the actuator shaft and kinematically coupled to the actuator shaft at a first longitudinal end thereof. A step-down gear is arranged at a second longitudinal end of the actuator shaft and is capable of being moved in an axial direction relative to the rotary motor. The step-down gear is kinematically coupled to the actuator shaft at the drive side, both with respect to axial movement of the actuator shaft and with respect to rotating movement of the actuator shaft.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: March 7, 2017
    Assignee: NTI AG
    Inventors: Ronald Rohner, Ernst Blumer
  • Publication number: 20140139050
    Abstract: A rotary lifting device comprises an actuator shaft, a linear motor and a rotary motor for moving and rotating the actuator shaft about the longitudinal axis thereof. The rotary motor has a hollow rotor, through which the actuator shaft extends and which is kinematically coupled to the actuator shaft in terms of rotation. The linear motor has an armature coaxially arranged with respect to the actuator shaft and kinematically coupled to the actuator shaft at a first longitudinal end thereof. A step-down gear is arranged at a second longitudinal end of the actuator shaft and is capable of being moved in an axial direction relative to the rotary motor. The step-down gear is kinematically coupled to the actuator shaft at the drive side, both with respect to axial movement of the actuator shaft and with respect to rotating movement of the actuator shaft.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 22, 2014
    Applicant: NTI AG
    Inventors: Ronald Rohner, Ernst Blumer
  • Patent number: 8547083
    Abstract: An apparatus (2;3;4;5) for determination of the axial position of the armature (11) of a linear motor comprises at least one pair of magnetically permeable, annular elements (12;20,21;30,31,34,35;40,41,44,45;48;50,51), which are arranged essentially coaxially and at a short distance (dr;db) from one another, such that an air gap (22;32,36;42,46) is formed between them, in which a magnetic field sensor (23;33,37;43,47;Si) for measurement of the magnetic field (B) in the air gap is arranged.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: October 1, 2013
    Assignee: NTI AG
    Inventor: Daniel Ausderau
  • Patent number: 7847442
    Abstract: In a linear motor (1) having a stator (2) and an armature (3), the stator (2) comprises a winding former (21) and a drive winding (22) provided on the winding former (21). Further, means are provided for preventing any contact between the drive winding (22) and the armature (3) in case the armature (3) penetrates through the winding former (21).
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: December 7, 2010
    Assignee: NTI AG
    Inventors: Ronald Rohner, Marco Hitz, Daniel Ausderau
  • Publication number: 20100072830
    Abstract: An apparatus (2;3;4;5) for determination of the axial position of the armature (11) of a linear motor comprises at least one pair of magnetically permeable, annular elements (12;20,21;30,31,34,35;40,41,44,45;48;50,51), which are arranged essentially coaxially and at a short distance (dr;db) from one another, such that an air gap (22;32,36;42,46) is formed between them, in which a magnetic field sensor (23;33,37;43,47;Si) for measurement of the magnetic field (B) in the air gap is arranged.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 25, 2010
    Applicant: NTI AG
    Inventor: Daniel Ausderau
  • Publication number: 20090261664
    Abstract: In a linear motor (1) having a stator (2) and an armature (3), the stator (2) comprises a winding former (21) and a drive winding (22) provided on the winding former (21). Further, means are provided for preventing any contact between the drive winding (22) and the armature (3) in case the armature (3) penetrates through the winding former (21).
    Type: Application
    Filed: April 8, 2009
    Publication date: October 22, 2009
    Applicant: NTI AG
    Inventors: Ronald Rohner, Marco Hitz, Daniel Ausderau
  • Patent number: 6532791
    Abstract: The invention relates to a method for increasing the positioning accuracy of an element (13) which is movably arranged relative to a stator (10). At least two sensors (11, 12) are provided in the stator (10), a first sensor (11) and a second sensor (12), which are arranged at a distance (a) from one another in the stator (10), with respect to the movement direction (P) of the movably arranged element (13). The element (13) which is arranged such that it can move relative to the stator (10) is provided with encoders (130) which can move together with the movable element (13) and, when the element (13) carries out a movement relative to the stator (10), firstly produce a sensor signal (S11) in the first sensor (11) and then, as the movement of the element progresses, produce a sensor signal (S12) in the second sensor (12). First of all, in a calibration run, the movable element (13) is moved over the entire possible range of movement.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: March 18, 2003
    Assignee: NTI AG
    Inventors: Kuno Schmid, Daniel Ausderau, Marco Hitz, Ronald Rohner
  • Publication number: 20020049553
    Abstract: The invention relates to a method for increasing the positioning accuracy of an element (13) which is movably arranged relative to a stator (10). At least two sensors (11, 12) are provided in the stator (10), a first sensor (11) and a second sensor (12), which are arranged at a distance (a) from one another in the stator (10), with respect to the movement direction (P) of the movably arranged element (13). The element (13) which is arranged such that it can move relative to the stator (10) is provided with encoders (130) which can move together with the movable element (13) and, when the element (13) carries out a movement relative to the stator (10), firstly produce a sensor signal (S11) in the first sensor (11) and then, as the movement of the element progresses, produce a sensor signal (S12) in the second sensor (12). First of all, in a calibration run, the movable element (13) is moved over the entire possible range of movement.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 25, 2002
    Applicant: NTI AG
    Inventors: Kuno Schmid, Daniel Ausderau, Marco Hitz, Ronald Rohner
  • Patent number: 6316848
    Abstract: A linear motor having a stator and a runner which can be displaced in the direction of the longitudinal axis of the stator comprises at least one memory unit in which characteristic data for the respective linear motor are stored.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: November 13, 2001
    Assignee: NTI AG
    Inventors: Ronald Rohner, Marco Hitz, Luca Ritter