Abstract: A method for treating cells and/or nuclear transfer units and/or stem cells in culture with such compounds, individually or in combinations, is described. The method results in a globally hypomethylated genome and a restoration of cell differentiation and/or developmental potential, or potentiality. In addition, a method for the in vitro production of reprogrammed cells which have had differentiation potential (totipotential, pluripotential, or multipotential) restored by demethylating the genome is described.
Abstract: The invention relate to methods, compositions, and kits for reprogramming a cell. In one embodiment, the invention relates to a method for inducing the expression of at least one gene that contributes to a cell being pluripotent or multipotent. In yet another embodiment, the method comprises inhibiting the expression of a gene that codes for a protein involved in transcriptional repression. In yet another embodiment, the invention relates to a reprogrammed cell or an enriched population of reprogrammed cells that can have characteristics of an ES-like cell, which can be re- or trans-differentiated into a differentiated cell type.
Type:
Grant
Filed:
April 7, 2009
Date of Patent:
January 22, 2013
Assignee:
Nupotential, Inc.
Inventors:
Kenneth J. Eilertsen, Rachel A. Power, Jong S. Rim
Abstract: The invention relate to methods, compositions, and kits for reprogramming a cell. In one embodiment, the invention relates to a method comprising inducing the expression of at least one gene that contributes to a cell being pluripotent or multipotent. In yet another embodiment, the method comprises inhibiting the activity of an HDAC with an HDAC inhibitor and inducing the expression of at least one gene that contributes to a cell being pluripotent or multipotent. In still another embodiment, the invention relates to a method for reprogramming comprising exposing a cell to more than one agent to inhibit more than ore type of regulatory protein.
Type:
Application
Filed:
April 7, 2009
Publication date:
November 5, 2009
Applicant:
NuPotential, Inc.
Inventors:
Kenneth J. Eilertsen, Rachel A. Power, Jong S. Rim
Abstract: The invention relate to methods, compositions, and kits for reprogramming a cell. In one embodiment, the invention relates to a method for inducing the expression of at least one gene that contributes to a cell being pluripotent or multipotent. In yet another embodiment, the method comprises inhibiting the expression of a gene that codes for a protein involved in transcriptional repression. In yet another embodiment, the invention relates to a reprogrammed cell or an enriched population of reprogrammed cells that can have characteristics of an ES-like cell, which can be re- or trans-differentiated into a differentiated cell type.
Type:
Application
Filed:
April 7, 2009
Publication date:
October 29, 2009
Applicant:
NuPotential, Inc.
Inventors:
Kenneth J. Eilertsen, Rachel A. Power, Jong S. Rim
Abstract: A method for treating cells and/or nuclear transfer units and/or stem cells in culture with such compounds, individually or in combinations, is described. The method results in a globally hypomethylated genome and a restoration of cell differentiation and/or developmental potential, or potentiality. In addition, a method for the in vitro production of reprogrammed cells which have had differentiation potential (totipotential, pluripotential, or multipotential) restored by demethylating the genome is described.
Abstract: The invention relate to methods, compositions, and kits for reprogramming a cell. In one embodiment, the invention relates to a method comprising inducing the expression of at least one gene that contributes to a cell being pluripotent or multipotent. In yet another embodiment, the method comprises exposing a cell to a small molecule modulator that induces the expression of at least one gene that contributes to a cell being pluripotent or multipotent. In yet another embodiment, the invention relates to a reprogrammed cell and an enriched population of reprogrammed cells that can have characteristics of an ES-like cell can be re- or trans-differentiated into various differentiated cell types.