Abstract: A method for monitoring and controlling chemical concentration in a direct injection agricultural sprayer system monitors initial chemical concentration output from a chemical tank, carrier flow from a carrier tank, and mixed chemical concentration at nozzles of the spray system downstream of individual mixing points of the nozzles. Flow from the carrier tank and/or the chemical tank are controlled to target a set concentration at each of the nozzles. The initial chemical concentration establishes maximum concentration and a calibration curve for a chemical being applied and the mixed chemical concentration establishes an applied concentration in view of the calibration curve. A system is provided for the method.
Abstract: An in-line fiber-optic sensing element, a system, and methods for detecting strain using a fiber optic sensor are described that include using at least two chirped grating structures. In an implementation, an in-line fiber-optic sensing element that employs example techniques in accordance with the present disclosure includes an optically transmissive fiber including a core and an outer layer; a Fabry-Perot cavity defined by a portion of the optically transmissive fiber and two chirped fiber-Bragg grating structures, where the two chirped grating structures are separated and are configured to reflect light.
Abstract: A fiber optic sensor, a process for utilizing a fiber optic sensor, and a process for fabricating a fiber optic sensor are described, where a double-side-polished silicon pillar is attached to an optical fiber tip and forms a Fabry-Pérot cavity. In an implementation, a fiber optic sensor in accordance with an exemplary embodiment includes an optical fiber configured to be coupled to a light source and a spectrometer; and a single silicon layer or multiple silicon layers disposed on an end face of the optical fiber, where each of the silicon layer(s) defines a Fabry-Pérot interferometer, and where the sensor head reflects light from the light source to the spectrometer. In some implementations, the fiber optic sensor may include the light source coupled to the optical fiber, a spectrometer coupled to the optical fiber, and a controller coupled to the high-speed spectrometer.
Type:
Grant
Filed:
March 13, 2018
Date of Patent:
December 31, 2019
Assignees:
NUTECH VENTURES, Inc., The United States of America, as represented by the Secretary of the Navy
Inventors:
Ming Han, Guigen Liu, Weilin Hou, Qiwen Sheng
Abstract: A method and apparatus of selecting derivative strategies, where candidate derivative strategies are selected from a set of essentially all possible derivative strategies available for an underlying, based upon a user's market sentiment for an underlying, to perform favorably under the foreseen conditions being most appropriate to the user's strategic intent and the choices afforded by the relevant markets.
Abstract: A method and apparatus for generating high-energy beams of electrons or x-rays through laser wakefield acceleration to remotely examine containers is disclosed. By scanning the beam of electrons or x-rays across a container, an inspector can remotely determine whether the containers contain items of interest, such as special nuclear materials, without having to manually inspect the contents of the container. The invention can be compact enough to be portable, which provides for the flexibility to examine a variety of different containers under a variety of different conditions.