Abstract: A battery charging apparatus includes a first switch, a second switch, a third switch and a fourth switch connected in series between an input voltage bus and ground, wherein a common node of the second switch and the third switch is configured to be coupled to a battery, a flying capacitor connected between a common node of the first switch and the second switch, and a common node of the third switch and the fourth switch, and a controller configured to generate gate drive signals for configuring at least one switch of the first switch and the second switch as a linear regulator during a charging process of the battery.
Abstract: A method includes providing a current flowing through a first flying capacitor of a switched-capacitor power converter, measuring a first voltage at one terminal of the first flying capacitor at a first voltage measurement time instant, measuring a second voltage at the one terminal of the first flying capacitor at a second voltage measurement time instant, and calculating a capacitance value of the first flying capacitor based on the first voltage, the second voltage, the first voltage measurement time instant and the second voltage measurement time instant.
Abstract: A power converter includes a plurality of switches coupled between an input bus and an output bus, a full bridge coupled between the output bus and ground, and a plurality of capacitors coupled between the plurality of switches and the full bridge, wherein one capacitor of the plurality of capacitors is connected to a midpoint of one leg of the full bridge through a switch.
Abstract: A power converter includes a plurality of switches coupled between an input bus and an output bus, a full bridge coupled between the output bus and ground, and a plurality of capacitors coupled between the plurality of switches and the full bridge, wherein one capacitor of the plurality of capacitors is connected to a midpoint of one leg of the full bridge through a switch.
Abstract: A method includes configuring a switched capacitor converter to operate in a first fixed PWM mode, wherein in the first fixed PWM mode, the switched capacitor converter is configured to charge a battery coupled to an input of the switched capacitor converter, configuring the switched capacitor converter to operate in a second fixed PWM mode, wherein in the second fixed PWM mode, the switched capacitor converter is configured to discharge the battery, and configuring the switched capacitor converter to operate in a skip mode, wherein the switched capacitor converter has automatic transitions among different modes based on comparisons between an output voltage of the switched capacitor converter and a plurality of predetermined voltage thresholds.