Patents Assigned to NVIDIA Corporation
  • Patent number: 10810784
    Abstract: Systems and methods for improved texture mapping and graphics processing are described. According to an example implementation, whole or parts of texture blocks are prefetched to an intermediate cache by a processing unit so that the same processing unit or another processing unit can subsequently obtain the prefetched texture block from the intermediate cache. Moreover, in some example implementations, control circuitry associated with the intermediate cache may throttle prefetch requests in order to avoid the memory system and/or the interconnect system receiving excessive amounts of prefetch requests. Additionally, in some implementations, deduplication of prefetch requests can be performed at the intermediate cache and/or the processing unit. Some implementations also include an efficient technique for calculating the address of the next texture block to be prefetched.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 20, 2020
    Assignee: NVIDIA Corporation
    Inventors: Pranava Ajith Rai, Amit Jain
  • Patent number: 10810785
    Abstract: In a ray tracer, to prevent any long-running query from hanging the graphics processing unit, a traversal coprocessor provides a preemption mechanism that will allow rays to stop processing or time out early. The example non-limiting implementations described herein provide such a preemption mechanism, including a forward progress guarantee, and additional programmable timeout options that can be time or cycle based. Those programmable options provide a means for quality of service timing guarantees for applications such as virtual reality (VR) that have strict timing requirements.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: October 20, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: Greg Muthler, Ronald Charles Babich, Jr., William Parsons Newhall, Jr., Peter Nelson, James Robertson, John Burgess
  • Patent number: 10795722
    Abstract: One embodiment of the present invention sets forth a technique for encapsulating compute task state that enables out-of-order scheduling and execution of the compute tasks. The scheduling circuitry organizes the compute tasks into groups based on priority levels. The compute tasks may then be selected for execution using different scheduling schemes. Each group is maintained as a linked list of pointers to compute tasks that are encoded as task metadata (TMD) stored in memory. A TMD encapsulates the state and parameters needed to initialize, schedule, and execute a compute task.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: October 6, 2020
    Assignee: NVIDIA Corporation
    Inventors: Jerome F. Duluk, Jr., Lacky V. Shah, Sean J. Treichler
  • Patent number: 10798457
    Abstract: A gaming system includes a network server and a gaming manager communicatively coupled to the network server. The gaming manager having a video control unit that starts a video game running remotely with a static video portion and a user interactive video portion and a video receiving unit, coupled to the video control unit, that receives the static video portion for local display while the user interactive video portion is being initialized remotely for subsequent local game play. The gaming system further includes a local user device, coupled to the gaming manager, that initially displays the static video portion and provides a user interface for the subsequent local game play following completion of remote initialization of the user interactive video portion. A method of managing a remote game is also provided.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 6, 2020
    Assignee: Nvidia Corporation
    Inventors: Bojan Vukojevic, Franck Diard
  • Patent number: 10795691
    Abstract: A system, method, and computer program product are provided for simultaneously determining settings for a plurality of parameter variations. In use, a plurality of parameter variations associated with a device is identified. Additionally, settings for each of the plurality of parameter variations are determined simultaneously.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: October 6, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: John F. Spitzer, Rev Lebaredian, Yury Uralsky
  • Patent number: 10789194
    Abstract: Systems and techniques for synchronizing transactions between processing devices on an interconnection network are provided. Upon receiving a stream of posted transactions followed by a flush transaction from a source processing device connected to the interconnection network, the flush transaction is trapped before it enters the interconnecting network. Subsequently, based on monitoring for responses received from a destination processing device for transactions corresponding to the posted transactions, a flush response is generated and returned to the source processing device. The described techniques enable efficient synchronizing posted writes, posted atomics and the like over complex interconnection fabrics such that a first GPU can write data to a second GPU so that a third GPU can safely consume the data written to the second GPU.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: September 29, 2020
    Assignee: NVIDIA Corporation
    Inventors: Larry R. Dennison, Mark Hummel, Glenn Dearth
  • Patent number: 10790628
    Abstract: A power adapter has a solenoid actuated retaining latch controlled by an electronic circuit that detects the presence or absence of AC mains voltage. When the assembled AC-DC adapter and plug assembly are removed from the wall, the latch detects removal and unlocks the plug assembly for easy removal without undue force required by the user. The circuit is designed for minimal power consumption, and the solenoid only consumes power when it is engaging or disengaging the latch.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: September 29, 2020
    Assignee: NVIDIA Corporation
    Inventors: Boris Landwehr, James Lee, Craig Crawford, Andrew Bell, Samuel Duell
  • Patent number: 10783950
    Abstract: The present invention facilitates efficient and effective utilization of storage management features. In one embodiment, a system comprises: a storage component, a memory controller, and a communication link. The storage component stores information. The memory controller controls the storage component. The communication link communicatively couples the storage component and the memory controller. In one embodiment, the communication link communicates storage system management information between the memory storage component and memory controller, and communication of the storage system management information does not interfere with command/address information communication and data information communication.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 22, 2020
    Assignee: Nvidia Corporation
    Inventors: Alok Gupta, David Reed
  • Patent number: 10783393
    Abstract: A method, computer readable medium, and system are disclosed for sequential multi-tasking to generate coordinates of landmarks within images. The landmark locations may be identified on an image of a human face and used for emotion recognition, face identity verification, eye gaze tracking, pose estimation, etc. A neural network model processes input image data to generate pixel-level likelihood estimates for landmarks in the input image data and a soft-argmax function computes predicted coordinates of each landmark based on the pixel-level likelihood estimates.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: September 22, 2020
    Assignee: NVIDIA Corporation
    Inventors: Pavlo Molchanov, Stephen Walter Tyree, Jan Kautz, Sina Honari
  • Patent number: 10783394
    Abstract: A method, computer readable medium, and system are disclosed to generate coordinates of landmarks within images. The landmark locations may be identified on an image of a human face and used for emotion recognition, face identity verification, eye gaze tracking, pose estimation, etc. A transform is applied to input image data to produce transformed input image data. The transform is also applied to predicted coordinates for landmarks of the input image data to produce transformed predicted coordinates. A neural network model processes the transformed input image data to generate additional landmarks of the transformed input image data and additional predicted coordinates for each one of the additional landmarks. Parameters of the neural network model are updated to reduce differences between the transformed predicted coordinates and the additional predicted coordinates.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: September 22, 2020
    Assignee: NVIDIA Corporation
    Inventors: Pavlo Molchanov, Stephen Walter Tyree, Jan Kautz, Sina Honari
  • Patent number: 10776985
    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 15, 2020
    Assignee: NVIDIA Corporation
    Inventors: Shiqiu Liu, Christopher Ryan Wyman, Jon Hasselgren, Jacob Munkberg, Ignacio Llamas
  • Patent number: 10776532
    Abstract: A system and method for solving linear complementarity problems for rigid body simulation is disclosed. The method includes determining a plurality of modified effective masses for a plurality of contacts between a plurality of bodies, wherein each modified effective mass term is based on a corresponding number of contacts. A plurality of relative velocities is determined based on the plurality of body velocities determined from a last iteration. A plurality of impulse corrections is determined based on the plurality of modified effective masses and the plurality of relative velocities. A plurality of updated impulses is determined based on the impulse corrections. The plurality of updated impulses is applied to the plurality of bodies based on a plurality of original masses of the bodies, body velocities determined from the last iteration, to determine a plurality of updated velocities of the plurality of bodies.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: September 15, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: Richard Tonge, Feodor Benevolenski, Andrey Voroshilov
  • Patent number: 10776688
    Abstract: Video interpolation is used to predict one or more intermediate frames at timesteps defined between two consecutive frames. A first neural network model approximates optical flow data defining motion between the two consecutive frames. A second neural network model refines the optical flow data and predicts visibility maps for each timestep. The two consecutive frames are warped according to the refined optical flow data for each timestep to produce pairs of warped frames for each timestep. The second neural network model then fuses the pair of warped frames based on the visibility maps to produce the intermediate frame for each timestep. Artifacts caused by motion boundaries and occlusions are reduced in the predicted intermediate frames.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: September 15, 2020
    Assignee: NVIDIA Corporation
    Inventors: Huaizu Jiang, Deqing Sun, Varun Jampani
  • Patent number: 10776983
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include analyzing point cloud data using trajectory equations, depth maps, and texture maps. The processing improvements also include representing the point cloud data by a two dimensional depth map or a texture map and using the depth map or texture map to provide object motion, obstacle detection, freespace detection, and landmark detection for an area surrounding a vehicle.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 15, 2020
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 10776995
    Abstract: The introduced method and system use a 4-dimensional (4D) light field as a background of a scene, instead of 2D background image. Realizing computing a light field takes tremendous amounts of processing power, data storage and time (even with the currently available hardware), the introduced method and system compute and store the light field before rendering a scene. To reduce the time storing and accessing the light field during the rendering process, the introduced method and system also uses a modified video codec to compress and decompress the light field as 2D images.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 15, 2020
    Assignee: Nvidia Corporation
    Inventor: Daniel Seibert
  • Publication number: 20200286587
    Abstract: The present disclosure provides methods, systems, and computer program products that use deep learning models to classify candidate mutations detected in sequencing data, particularly suboptimal sequencing data. The methods, systems, and programs provide for increased efficiency, accuracy, and speed in identifying mutations from a wide range of sequencing data.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: NVIDIA Corporation
    Inventors: Johnny ISRAELI, Avantika LAL, Michael VELLA, Nikolai YAKOVENKO, Zhen HU
  • Patent number: 10769454
    Abstract: System and methods for detecting blockages in images are described. A method may include receiving a plurality of images captured by a camera installed on a vehicle. The method may include identifying one or more candidate blocked regions in the plurality of images. Each of the candidate blocked regions may contain image data caused by blockages in the camera's field-of-view. The method may further include assigning blockage scores to the one or more candidate blocked regions based on region-associations among the one or more candidate blocked regions in the plurality of images. In response to a determination that one of the blockage scores is above a predetermined blockage threshold, the method may include transmitting a blockage alarm signal to the vehicle.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: September 8, 2020
    Assignee: NVIDIA CORPORATION
    Inventors: Xiaoyan Mu, Xiaohan Hu
  • Patent number: 10769076
    Abstract: Multiprocessor clusters in a virtualized environment conventionally fail to provide memory access security, which is frequently a requirement for efficient utilization in multi-client settings. Without adequate access security, a malicious process may access what might be confidential data that belongs to a different client sharing the multiprocessor cluster. Furthermore, an inadvertent programming error in the code for one client process may accidentally corrupt data that belongs to the different client. Neither scenario is acceptable. Embodiments of the present disclosure provide access security by enabling each processing node within a multiprocessor cluster to virtualize and manage local memory access and only process access requests possessing proper access credentials. In this way, different applications executing on a multiprocessor cluster may be isolated from each other while advantageously sharing the hardware resources of the multiprocessor cluster.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 8, 2020
    Assignee: NVIDIA Corporation
    Inventors: Samuel Hammond Duncan, Sanjeev Jain, Mark Douglas Hummel, Vyas Venkataraman, Olivier Giroux, Larry Robert Dennison, Alexander Toichi Ishii, Hemayet Hossain, Nir Haim Arad
  • Patent number: 10769840
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include using a three dimensional polar depth map to assist in performing nearest neighbor analysis on point cloud data for object detection, trajectory detection, freespace detection, obstacle detection, landmark detection, and providing other geometric space parameters.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 8, 2020
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 10761582
    Abstract: A computer system comprising: a graphics processor, a display controller comprising a display-local frame buffer, a display device, and a memory. The memory stores instructions, that when executed by the computer system, perform a method of entering a power management state. The method comprises detecting that the computer system is idle and optional proximity detector for determining if a user is present in front of the system. With the computer system idle, and the user in proximity of the system, the display-local frame buffer is activated. Display information transmitted by the graphics processor is stored in the display-local frame buffer. Initially a power reduction state is initiated for the graphics subsystem including the graphics processor, and the display device is placed in a self-refresh state with the display self-refreshing from information stored in the local frame buffer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 1, 2020
    Assignee: Nvidia Corporation
    Inventors: David Wyatt, Rambod Jacoby