Abstract: It is herein proposed a novel beacon light device with a circuit board and an enclosure which at least partially encloses the circuit board. The circuit board features a leading board section and a neck board section which is narrower than the leading board section. The enclosure features a wide opening section which has a width equal to or greater than that of the leading board section for permitting passage of the leading board section through the opening. The enclosure also features a narrow opening section which has a width that is smaller than that of the leading board section for preventing passage of the leading board section through the opening.
Abstract: A robust and easy to install obstruction illuminator is herein disclosed. The obstruction illuminator features an elongated body with a first end and a second end opposing the first end. The body of the obstruction illuminator has an inner cavity, which extends between the first and second end. An artificial light source is fitted to the first end of the body and an emission lens is fitted to the second end of the body. The artificial light source is configured to emit light into the cavity towards the second end. An optical condenser element is provided into the inner cavity of the body between the artificial light source and the emission lens. The optical condenser element receives light from the artificial light source as well as condenses and directs the condensed light toward the emission lens. The emission lens refracts the light into a pattern suitable for warning about the presence of an obstacle.
Abstract: An illuminator including a plurality of light emitting elements and a lens having a concave cylindrical first optical surface and a second optical surface, such that a thickness between the first and second optical surfaces is non-uniform along first and second orthogonal directions.
Abstract: A compact PAPI having a semiconductor light source and finely distribution of lights is herein proposed. The novel PAPI includes two artificial light sources each with a plurality of semiconductor emitters as well as two concave and two planar reflectors, one for each artificial light source. The concave reflectors collect light emitted by the plurality of semiconductor emitters of the first and second artificial light sources and gather the collected light to the planar reflectors as output of the PAPI.
Abstract: According to an example aspect of the present invention, there is provided a novel illuminator 100 having a light source (10) and optics (20). The light source (10) and optics have light emitting and light path modifying components (11, 12, 21, 22, 23), which form two different combinations. The components of the first combination cooperate so as to output a first output light pattern (A) having a width in a plane and the components of the second combination cooperate such to output a second output light pattern (B) having a width in said plane. The width of the second output light pattern (B) is narrower than that of the first output light pattern (A), whereby the total output light pattern (A+B) of the illuminator (100) is a sum of the output light patterns (A, B) produced by the combinations of components (11, 12, 21, 22). The illuminator may be a flight obstacle illuminator or a navigational aid.