Patents Assigned to Oclaro (New Jersey), Inc.
  • Patent number: 8654434
    Abstract: An optical device compensates for decreased transmission of light caused by gaps between mirrors of a MEMS array. The optical device employs MEMS mirrors having non-reflecting regions on them disposed such that reflecting regions of the MEMS mirrors have substantially the same optical throughput, or an additional optical element having increased transmission at those spatial positions where light impinging on the gaps passes through. Alternatively, the optical device may employ a filter having spectral transmission characteristic with increased transmission at those wavelengths of dispersed light that impinge on the gaps.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: February 18, 2014
    Assignee: Oclaro (New Jersey), Inc.
    Inventors: Gil Cohen, Yossi Corem, Roey Harel
  • Patent number: 8078019
    Abstract: A fiber-optical, wavelength selective switch, especially for channel routing with equalization and blocking applications. The input signals are converted to light beams having predefined polarizations (41). The beams are then laterally expanded (43), and then undergo spatial dispersion in the beam expansion plane. The different wavelength components are directed through a polarization rotation device, pixilated along the wavelength dispersion direction such that each pixel operates on a separate wavelength. Each beam is passed into a pixilated beam steering array (48), for directing each wavelength to a desired output port. The beam steering devices can be MEMS-based or Liquid crystal-based, or an LCOS array. When the appropriate voltage is applied to a pixel and its associated beam steering element, the polarization of the light passing through the pixel is rotated and the beam steered to couple to the selected output port.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 13, 2011
    Assignee: Oclaro (New Jersey), Inc.
    Inventors: Gil Cohen, Seong Woo Suh, Yossi Corem
  • Patent number: 7940465
    Abstract: A collimator array using a molded element to hold the input fibers and to collimate the light. The input fibers are held within holes in one face of the element, and the collimation of the light emitted from the ends of the fibers is performed by an array of lenses appropriately located such that each lens collimates the light emitted from a fiber end. The lateral spacing between the holes is made to be equal to the lateral spacing between the lenses of the array. Since, in a molded element, this lateral spacing can be accurately provided, good alignment of the input fibers with the lenses can be achieved. The depths of the holes can be made such that when a fiber is inserted right to the bottom of a hole, the end of that fiber is accurately located such that the light emitted therefrom is collimated by the lens. This avoids the need for accurate manual alignment of the fibers of the array.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: May 10, 2011
    Assignee: Oclaro (New Jersey), Inc.
    Inventors: Yossi Corem, Gil Cohen, Boris Frenkel
  • Publication number: 20110033151
    Abstract: A fiber-optical, wavelength selective switch, especially for channel routing with equalization and blocking applications. The input signals are converted to light beams having predefined polarizations (41). The beams are then laterally expanded (43), and then undergo spatial dispersion in the beam expansion plane. The different wavelength components are directed through a polarization rotation device, pixilated along the wavelength dispersion direction such that each pixel operates on a separate wavelength. Each beam is passed into a pixilated beam steering array (48), for directing each wavelength to a desired output port. The beam steering devices can be MEMS-based or Liquid crystal-based, or an LCOS array. When the appropriate voltage is applied to a pixel and its associated beam steering element, the polarization of the light passing through the pixel is rotated and the beam steered to couple to the selected output port.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 10, 2011
    Applicant: OCLARO (NEW JERSEY), INC.
    Inventors: Gil COHEN, Seong Woo Suh, Yossi Corem
  • Patent number: 7822303
    Abstract: A fiber-optical, wavelength selective switch, especially for channel routing with equalization and blocking applications. The input signals are converted to light beams having predefined polarizations (41). The beams are then laterally expanded (43), and then undergo spatial dispersion in the beam expansion plane. The different wavelength components are directed through a polarization rotation device, pixilated along the wavelength dispersion direction such that each pixel operates on a separate wavelength. Each beam is passed into a pixilated beam steering array (48), for directing each wavelength to a desired output port. The beam steering devices can be MEMS-based or Liquid crystal-based, or an LCOS array. When the appropriate voltage is applied to a pixel and its associated beam steering element, the polarization of the light passing through the pixel is rotated and the beam steered to couple to the selected output port.
    Type: Grant
    Filed: September 10, 2006
    Date of Patent: October 26, 2010
    Assignee: Oclaro (New Jersey), Inc.
    Inventors: Gil Cohen, SeongWoo Suh, Yossi Corem
  • Patent number: 7733556
    Abstract: An optical beam processing device with two serially disposed birefringent elements, each element having its own direction of orientation. At least one element is pixelated with electrodes activated by control signals. The directions of orientation of the elements are aligned such that the phase shift imparted to the beam by an unactivated pixel of one element, cancels the phase shift imparted to the beam by the other element, such that the beam traversing that pixel undergoes zero phase shift. An appropriate control signal adds a phase shift to the beam passing through that pixel, so as to generate an overall phase shift through the device for any desired wavelength, which could not be readily achieved by either of the elements alone. The resulting device is thus able to provide switchable phase shifts of exactly zero and pi, for different wavelengths, generally unattainable by a single element device.
    Type: Grant
    Filed: May 9, 2004
    Date of Patent: June 8, 2010
    Assignee: Oclaro (New Jersey), Inc.
    Inventors: SeongWoo Suh, Yossi Corem