Patents Assigned to OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
  • Patent number: 11643717
    Abstract: A coated tool for hot stamping of coated or uncoated sheet metals, comprising a coated substrate surface to be in contact with the coated or uncoated metal sheet, wherein the coating in the coated substrate surface comprises one or more inferior layers and one or more superior layers, where the inferior layers are deposited closer to the substrate surface than the superior layers, and: the inferior layers are designed for providing load bearing capacity, the superior layers are designed for providing galling resistance, at least one superior layer is deposited having a multi-nanolayer structure wherein: one type of nanolayer is composed of at least 90 at.-% of chromium and nitrogen, a second type of nanolayer is composed of at least 90 at.-% of titanium, aluminum and nitrogen, a third type of nanolayer is composed of at least 90 at.-% of vanadium carbon and nitrogen.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: May 9, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Ali Khatibi, Hamid Bolvardi, Etienne Billot, Nikolas Schaal, Pascal Schaback, Mirjam Arndt
  • Patent number: 11637000
    Abstract: The present invention relates to a coating device comprising a vacuum coating chamber for conducting vacuum coating processes, said vacuum coating chamber comprising: —one or more cooled chamber walls 1 having an inner side 1 b and a cooled side 1 a, —protection shields being arranged in the interior of the chamber as one or more removable shielding plates 2, which cover at least part of the surface of the inner side 1 b of the one or more cooled chamber walls 1, wherein at least one removable shielding plate 2 is placed forming a gap 8 in relation to the surface of the inner side 1 b of the cooled chamber wall 1 that is covered by said removable shielding plate 2, wherein: —thermal conductive means 9 are arranged filling the gap 8 in an extension corresponding to at least a portion of the total surface of the inner side 1 b of the cooled chamber wall 1 that is covered by said removable shielding plate 2, wherein the thermal conductive means 9 enable conductive heat transfer between said removable shielding p
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: April 25, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Siegfried Krassnitzer, Sebastien Guimond
  • Patent number: 11629398
    Abstract: An arc ignition device for cathodic arc deposition of a target material onto a substrate, comprising a trigger finger arranged moveable between a contacting position and a resting position, wherein in the contacting position a side surface of an adjacent target can be physically contacted by the trigger finger, and in the resting position the adjacent target cannot be contacted by the trigger finger, wherein during cathodic arc deposition of a target material, the trigger finger is arranged movable between the contacting position and the resting position in such a way that the contamination of the trigger finger with deposited target material during the cathodic arc deposition of the target material can be minimized.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: April 18, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Siegfried Krassnitzer, Juerg Hagmann, Andreas Peter Treuholz, Dominik Erwin Widmer
  • Patent number: 11629306
    Abstract: The present invention relates to coated sliding parts having coating systems which allow better sliding performance under dry and/or under lubricated conditions. The coating systems according to the present invention being characterized by having an outermost layer which—is a smooth oxide-containing layer in case of sliding applications under lubricated conditions, or—is a self-lubricated layer comprising molybdenum nitride, in case of sliding applications under dry or lubricated conditions, is a self lubricated layer with a structured surface comprising a multitude of essentially circular recesses with diameters of several micrometers or below, the recesses randomly distributed over the surface.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: April 18, 2023
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Jurgen Ramm, Florian Seibert, Beno Widrig
  • Patent number: 11590528
    Abstract: The present invention discloses a tool holding device for shank type tools, comprising at least one tool holder, a base part and a top part, whereby at least the top part comprises uptake holes for the at least one tool holder characterized in that, the tool holding device can be used for more than one process step among transfer, cleaning, pretreatment, coating, posttreatment, and each of the at least one tool holders can optionally take up a sleeve holding the shank type tool in a distinct, preferably upright position and comprises one or more openings, which allow fluid and/or solid treatment agents to exit the tool holder and/or sleeve and the at least one tool holder and/or sleeve enables three-fold rotation of the shank type tool. Further a method using the inventive tool holding device is disclosed.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: February 28, 2023
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Remo Vogel, Max Siebert, Mario Rombach, Philipp Bartholet, Masar Demiri, Dieter Mueller, Sven Hegersweiler, Sebastian Benedikt, Roger Walt
  • Patent number: 11578401
    Abstract: An ARC evaporator comprising: a cathode assembly comprising a cooling plate (11), a target (1) as cathode element, an electrode arranged for enabling that an arc between the electrode and the front surface (1A) of the target (1) can be established—a magnetic guidance system placed in front of the back surface (1 B) of the target (i) comprising means for generating one or more magnetic whereas: —the borders of the cathode assembly comprise a surrounding shield (15) made of ferromagnetic material, wherein the surrounding shield (15) has a total height (H) in the transversal direction, said total height (H) including a component (C) for causing a shielding effect of magnetic field lines extending in any longitudinal directions, establishing in this manner the borders of the cathode assembly as limit of the extension of the magnetic field lines in any longitudinal direction.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: February 14, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Siegfried Krassnitzer, Juerg Hagmann
  • Patent number: 11560618
    Abstract: The present invention relates to a method for producing a multilayer film comprising aluminum, chromium, oxygen and nitrogen, in a vacuum coating chamber, the multilayer film comprising layers of type A and layers of type B deposited alternate one of each other, wherein during deposition of the multilayer film at least one target comprising aluminum and chromium is operated as cathode by means of a PVD technique and used in this manner as material source for supplying aluminum and chromium, and an oxygen gas flow and a nitrogen gas flow are introduced as reactive gases in the vacuum chamber for reacting with aluminum and chromium, thereby supplying oxygen and nitrogen for forming the multilayer film, characterized in that: —The A layers are deposited as oxynitride layers of Al—Cr—O—N by using nitrogen and oxygen as reactive gas at the same time, —The B layers are deposited as nitride layers of Al—Cr—N by reducing the oxygen gas flow and by increasing the nitrogen gas flow in order to use only nitrogen as reac
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: January 24, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Robert Raab, Christian Martin Koller, Paul Heinz Mayrhofer, Mirjam Arndt, Jürgen Ramm
  • Patent number: 11542587
    Abstract: A method for applying a coating having at least one TiCN layer to a surface of a substrate to be coated by means of high power impulse magnetron sputtering (HIPIMS), wherein, to deposit the at least one TiCN layer, at least one Ti target is used as the Ti source for producing the TiCN layer, said target being sputtered in a reactive atmosphere by means of a HIPIMS process in a coating chamber, wherein the reactive atmosphere comprises at least one inert gas; preferably argon, and at least nitrogen gas as the reactive gas, wherein: the reactive atmosphere additionally contains, as a second reactive gas, a gas containing carbon, preferably CH4, used as the source of carbon to produce the TiCN layer wherein, while depositing the TiCN layer, a bipolar bias voltage is applied to the substrate to be coated, or at least one graphite target is used as the source of carbon for producing the TiCN layer, said target being used for sputtering in the coating chamber using a HIPIMS process with the reactive atmosphere h
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: January 3, 2023
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Denis Kurapov, Siegfried Krassnitzer
  • Patent number: 11535928
    Abstract: A method for coating substrates in an arc vaporization source for generating hard surface coatings on tools is provided. The method includes providing an arc-vaporization source with at least one electric solenoid and a permanent magnet arrangement including marginal permanent magnets and a central permanent magnet. The method further includes adjusting the position of the central and marginal permanent magnets relative to the target surface in at least three settings, adjusting the strength of the generated magnetic field based on the position of the central and marginal permanent magnets among the at least three settings, and coating the substrates by an ARC vaporization coating process performed by the ARC vaporization source at each of the at least three settings.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 27, 2022
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Siegfried Krassnitzer, Juerg Hagmann, Oliver Gstoehl
  • Patent number: 11517933
    Abstract: A coating assembly for coating a plurality of substrates. The coating assembly includes a chamber. At least one target is disposed in the chamber and includes a coating material. At least one power supply is connected to the target. At least one support fixture is disposed in the chamber. The at least one support fixture includes a base having a plurality of recesses formed in an upper surface of the base. A first mounting component has a plurality of slots. The first mounting component is positioned on the upper surface of the base wherein at least some of the plurality of recesses are in registry with corresponding ones of the plurality of slots to define a plurality of cavities, each of the plurality of cavities configured to hold at least one of the plurality of substrates to be coated.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 6, 2022
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventor: Phillip J. LaForce
  • Publication number: 20220372629
    Abstract: A substrate having a multilayer coating system in the form of a surface coating, which has an outer cover layer comprising amorphous carbon, and a coating process for producing a substrate. At least a first MoaNx support layer is provided between the substrate and the cover layer, which support layer has a nitrogen content x, referred to an Mo content a, which is in the range of 25 at %?x?55 at %, with x+a=100 at %.
    Type: Application
    Filed: September 17, 2020
    Publication date: November 24, 2022
    Applicant: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Jörg VETTER, Jürgen BECKER, Johann KARNER
  • Patent number: 11499643
    Abstract: A valve component comprising a substrate with a sliding surface, the sliding surface being designed to be subjected to sliding against another surface during operation of the valve, wherein at least a portion of the sliding surface is coated with a coating comprising an under-layer comprising tungsten and an upper-layer deposited atop the under-layer, said upper-layer comprising diamond-like-carbon, wherein the under-layer comprises carbon and has a layer thickness of at least 11 micrometers, and the upper-layer has a lower coefficient of friction than the under-layer and has a layer thickness of at least 1.5 micrometers.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 15, 2022
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Andreas Stadlberger, Florian Rovere, Olivier Jarry, Manfred Wurzer, Franz Widowitz
  • Patent number: 11485543
    Abstract: A sealable volume has a wall forming at least a portion of a boundary limiting the volume. The wall includes a hydrogen permeation barrier including a layer system (LS) having at least one layer. The layer system includes at least one hydrogen barrier layer (HPBL) of an at least ternary oxide. Preferably, the oxide is substantially composed of Al, Cr and O and the hydrogen barrier layer (HPBL) is deposited using physical vapor deposition, in particular cathodic arc evaporation. Preferably, the layer system includes at least one of: an adhesion layer (AdhL), a hydrogen storage layer (HStL), a protective layer (ProtL), in particular a thermal barrier layer (ThBL), a diffusion barrier layer (DBL), an oxidation barrier layer (OxBL), a chemical barrier layer (ChBL), a wear resistance layer (WRL). Excellent hydrogen permeation barrier properties can be achieved, and the layer system can be tailored as required by an envisaged application.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 1, 2022
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventor: Jurgen Ramm
  • Patent number: 11479862
    Abstract: A component of a turbine, in particular a gas turbine, wherein the component has a coating for increasing the erosion and corrosion resistance, wherein the coating is preferably applied directly to the component, wherein the coating consists of a functional layer and an intermediate layer, wherein the intermediate layer is arranged between the turbine blade substrate and the functional layer and wherein the functional layer consists of the elements Al, Cr, O and N.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 25, 2022
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Juergen Ramm, Hamid Bolvardi, Oliver Jarry, Lin Shang, Beno Widrig, Carmen Jerg
  • Patent number: 11413695
    Abstract: The present invention relates to a tap drill comprising a substrate and a coating, wherein the coating is deposited on at least a portion of the substrate comprising the head of the drill, the coating comprising a first layer deposited directly on the substrate and a second layer deposited atop the first layer, wherein the first layer is a wear resistant layer of (Al, Cr)N deposited by Hi PIMS and the second layer is a friction reduction layer, wherein the second layer is a metal carbide layer or a metal-carbide comprising layer deposited by using a physical vapor deposition (PVD) process of the type magnetron sputtering, preferably of the type HiPIMS.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 16, 2022
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventor: Denis Kurapov
  • Publication number: 20220235451
    Abstract: Work piece carrier device to be installed in a vacuum chamber of a vacuum treatment system, comprising: one carousel X with a diameter dX, one or multiple carousels Ym with a diameter dYm<dX, which are mountable on carousel X one or multiple work piece supports Zn with diameters dZn?dYm, which are mountable on the one or multiple carousels Ym, two actuators A1 and A2.
    Type: Application
    Filed: May 7, 2020
    Publication date: July 28, 2022
    Applicant: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Jürgen GWEHENBERGER, Siegfried KRASSNITZER
  • Patent number: 11377745
    Abstract: Method for stripping a coating from a coated surface of a substrate, wherein the coating is stripped in an aqueous alkaline solution, characterized in that the method comprises following steps:—preparing the coated substrate to be decoated by providing the substrate with a strippable coating by depositing a coating comprising one or more layers, wherein one layer comprising aluminum is deposited directly on the substrate surface to be decoated and—introducting the substrate to be decoated in the aqueous alkaline solution, thereby conducting a chemical stripping of the coating from the substrate, whereas the aqueous alkaline solution comprises NaOH in a concentration in weight percentage from 30 wt. % to 50 wt. %.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 5, 2022
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Anders Olof Eriksson, Sebastian Benedikt, Vadim Schott
  • Publication number: 20220195587
    Abstract: The invention relates to a workpiece carrier device (1) for holding and moving workpieces (15), having: a workpiece carrier (2) for receiving workpieces (15), which is mounted on a main frame (4) so as to rotate about an axis (3); a drive part, which can likewise rotate about the axis (3) relative to the workpiece carrier (2); and multiple workpiece holders (5), which are arranged on the workpiece carrier (2) in a ring around the drive axis and are mounted on the workpiece carrier (2) so as to rotate about holder axes (6) which are spaced from the drive axis. The holder axes (6) run in such a way in relation to the axis (3) that the workpiece holders (5) form a conical crown arrangement (7). The invention further relates to a coating method using the workpiece carrier device (1) according to the invention and to workpieces or substrates (15) coated by means of the coating method (e.g, pins, pen injectors, balls, ball pins, pistons, nozzle needles etc.).
    Type: Application
    Filed: April 17, 2020
    Publication date: June 23, 2022
    Applicant: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Rudolf MEILER, Hubert EBERLE, Peter NAEFF
  • Patent number: 11306390
    Abstract: An ARC evaporator comprising: —a cathode assembly, —an electrode arranged for enabling that an arc between an electrode and a front surface of the target can be established, and—a magnetic guidance system placed in front of a back surface of the target characterized in that: the magnetic guidance system comprises means placed in a central region for generating at least one magnetic field and means in a peripherical region for generating at least one further magnetic field, wherein the magnetic fields generated in this manner result in a total magnetic field for guiding the arc and controlling the cathode spot path at the front surface of the target, wherein the means placed in the central region comprises one electromagnetic coil for generating a magnetic field and the means placed in the peripherical region comprises two electromagnetic coils for generating two further magnetic fields.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: April 19, 2022
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Siegfried Krassnitzer, Juerg Hagmann
  • Patent number: 11293089
    Abstract: The present invention relates to a component comprising a substrate coated with a coating having a film (3,4 or 3,4,5) comprising one or more transition metals, TM, aluminium, Al, and nitrogen, N, wherein the TM and N as well as Al and N are comprised in the film forming respectively nitride compounds, wherein the transition metal nitride, TM-N, is present in the film distributed in different portions exhibiting one crystalline phase of TM-N, and the aluminium nitride, Al—N, is present in the film in different portions exhibiting one phase of Al—N, whereas the phase of the transition metal nitride is cubic, c-TMN, the phase of the aluminium nitride is wurtzite, w-AIN, and wherein the film exhibits coherent or (semi-) coherent interfaces between the c-TMN phase portions and the w-AI-N phase portions.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: April 5, 2022
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Siva Phani Kumar Yalamanchili, Mirjam Arndt, Juergen Ramm, Siegfried Krassnitzer, Denis Kurapov