Patents Assigned to of Oregon State
  • Publication number: 20190359659
    Abstract: This disclosure describes compositions and methods for enhanced production of enduracidin in genetically engineered strains of Streptomycesfungicidicus. In particular, the present disclosure describes the genetic manipulation of regulatory genes orf24 and orf18 associated with the enduracidin (enramycin) biosynthesis gene cluster from Streptomyces fungicidicus to generate vector constructs and recombinant strains producing greater yields of enduracidin.
    Type: Application
    Filed: December 1, 2017
    Publication date: November 28, 2019
    Applicant: Oregon State University
    Inventors: T. Mark Zabriskie, Xihou Yin
  • Patent number: 10479906
    Abstract: Compositions containing fungal pigments and methods for making the compositions are described, as are methods of staining, painting or dyeing objects with such compositions.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: November 19, 2019
    Assignee: Oregon State University
    Inventors: Sara C. Robinson, Sarath Mercedes Vega Gutierrez
  • Publication number: 20190336469
    Abstract: Methods for inducing growth inhibition or apoptosis of Bcl-2-expressing cells and treatments of Bcl-2 expressing cancers are provided. Additionally, assays for agents that can induce apoptosis of Bcl-2 expressing cells are disclosed.
    Type: Application
    Filed: December 1, 2017
    Publication date: November 7, 2019
    Applicant: Oregon State University
    Inventors: Siva K. Kolluri, Prasad R. Kopparapu, Martin Pearce
  • Publication number: 20190328731
    Abstract: Methods of treatment of NTM lung infections using formulations of liposomal ciprofloxacin. Specific liposome formulations and delivery of such for treatment of respiratory tract infections and other medical conditions, and devices and formulations used in connection with such are described.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Applicants: ARADIGM CORPORATION, OREGON STATE UNIVERSITY
    Inventors: Igor GONDA, James BLANCHARD, David C. CIPOLLA, Luiz Eduardo Moreira BERMUDEZ
  • Patent number: 10449763
    Abstract: An amorphous thin metal film can include a combination of metals or metalloids including: 5 at % to 74 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 74 at % of a first metal; 5 at % to 74 at % of a second metal; and 5 at % to 70 at % of a dopant. The first and second metals can be independently selected from the group of titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, or platinum, wherein the first metal and the second metal can be different metals. The dopant can be selected from the group of oxygen, nitrogen, or combinations thereof. The metalloid, first metal, second metal, and dopant can account for at least 70 at % of the amorphous thin metal film.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: October 22, 2019
    Assignees: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., Oregon State University
    Inventors: James Elmer Abbott, Jr., John M McGlone, Kristopher Olsen, Roberto A Pugliese, Greg Scott Long, Douglas A Keszler, John Wager
  • Publication number: 20190319681
    Abstract: An apparatus for simultaneous transmit and receive is provided. The apparatus is capable of rejecting or passing transmitter and receiver signals. The apparatus includes: a transmitter; an antenna (e.g., a shared antenna); a receiver including switches controllable by time varying signals; and a quadrature coupler including first, second, third, and fourth ports, wherein the first port is coupled to the transmitter, wherein the second port is coupled to the antenna, and wherein the third and fourth ports are coupled to the receiver.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 17, 2019
    Applicant: Oregon State University
    Inventors: Arun NATARAJAN, Abhishek AGRAWAL, Sanket JAIN, Robin GARG
  • Patent number: 10426112
    Abstract: The invention provides processes for marker assisted selection of common beans expressing volatile compounds that provide flavor traits associated with single nucleotide polymorphisms (SNPs) and/or sequences flanking SNPs, as well as allele-specific oligo sequence primers configured to anneal to related SNPs and to report the presence or absence of SNPs with fluorescent signals using a PCR assay, a KASP assay (i.e., modified PCR assay), or other molecular marker assay, e.g., SSR, capable of identifying the presence or absence of SNPs and/or portions of flanking sequences of the SNPs, all of which enhances selection efficiency in common bean breeding strategies.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: October 1, 2019
    Assignee: Oregon State University
    Inventors: Lyle T. Wallace, James R. Myers
  • Patent number: 10400128
    Abstract: Disclosed herein are embodiments of a composition comprising at least one cellulose material (such as a cellulose nanomaterial) and an optional inorganic salt component. Some embodiments of the composition can further comprise additional components, with some embodiments further comprising a non-starch polysaccharide (e.g., methyl cellulose carboxymethyl cellulose or other cellulose derivative, chitosan, or the like), a surfactant, a plasticizer, an antimicrobial component, or any combination thereof. The disclosed compositions are useful for forming edible coatings/films on plants, plant parts, and other objects. The disclosed compositions and coatings/films made using the compositions are effective at protecting fresh and processed produce and other substances and products, from various different types of food processing damage (and the deleterious effects associated therewith).
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: September 3, 2019
    Assignee: Oregon State University
    Inventors: Yanyun Zhao, John Simonsen, George Cavender, Jooyeoun Jung, Leslie H. Fuchigami
  • Patent number: 10391098
    Abstract: Provided are antisense oligomers targeted against or genes associated with a biochemical pathway and/or cellular process, and related compositions and methods of using the oligomers and compositions to treat an infected mammalian subject, for example, as primary antimicrobials or as adjunctive therapies with classic antimicrobials.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 27, 2019
    Assignees: Board of Regents, The University of Texas System, Oregon State University
    Inventors: Bruce L. Geller, David Greenberg
  • Patent number: 10376508
    Abstract: Methods of treatment of NTM lung infections using formulations of liposomal ciprofloxacin. Specific liposome formulations and delivery of such for treatment of respiratory tract infections and other medical conditions, and devices and formulations used in connection with such are described.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: August 13, 2019
    Assignees: ARADIGM CORPORATION, OREGON STATE UNIVERSITY
    Inventors: Igor Gonda, James Blanchard, David C. Cipolla, Luiz Eduardo Moreira Bermudez
  • Publication number: 20190208680
    Abstract: A new and distinct Hop plant cultivar named ‘OR91331’ is disclosed, characterized by having an early mature date, resistance to downy mildew (Pseudoperonospora humuli [Miyabe & Takah.] G. W. Wilson) and powdery mildew (Podosphaera macularis [Walk.] U. Braun & S. Takam); vigorous with high yield potential; high alpha acids ; high oil content; and high amounts of some essential oil components implicated in driving beer flavor and aroma such as myrcene, cymene, methyl heptanoate, linalool, citronellol, and terpineol.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Applicant: Oregon State University
    Inventor: Michael Shaun Townsend
  • Patent number: 10334863
    Abstract: Disclosed herein are embodiments of a composition for use in forming films or coatings that prevent damage in foodstuffs, including plants, fruits, and vegetables. The disclosed compositions comprise a cellulose nanomaterial and can further comprise a nanoscale mineral compound and one or more additional components. Also disclosed are films or coatings made using the disclosed compositions, as well as methods for making the disclosed compositions and methods for using the disclosed compositions.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: July 2, 2019
    Assignee: Oregon State University
    Inventors: Yanyun Zhao, John Simonsen, George Cavender, Jooyeoun Jung, Leslie H. Fuchigami
  • Patent number: 10308649
    Abstract: A composition and method for treating autoimmune disease includes administering an effective amount of an aryl hydrocarbon receptor (AhR) ligand. The AhR ligand includes 11-Cl-BBQ, 10-Cl-BBQ, an analog of 11-Cl-BBQ, or combination thereof. The AhR ligand is administered topically, orally, transdermally, intravenously, subcutaneously, or with a nanoparticle. The AhR ligand induces regulatory T cells (AhR-Tregs). AhR-Treg cells block the differentiation of cytotoxic T-lymphocytes (CTL). The AhR ligand activates AhR in CD4+ T cells to induce CD4+ AhR-Tregs that suppress the development of effector CTL, thereby suppressing the development of CTL that attack host cells in graft versus host disease (GVHD) or ?-cells in the pancreas in diabetes mellitus type 1 (T1DM). The AhR ligand can also suppress development of CTL independently of Foxp3+ regulatory T cell induction. The AhR ligand can therefore be used to treat autoimmune diseases characterized by an absence of functional Foxp3+ regulatory T cell.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: June 4, 2019
    Assignee: Oregon State University
    Inventors: Nancy I. Kerkvliet, Siva Kumar Kolluri
  • Publication number: 20190162429
    Abstract: A heat and mass exchange (HMX) device comprising a plurality of membranes arranged in a stack. Adjacent membranes are separated from one another by an airflow channel Each membrane of the stack comprises an array of integrated support structures that extend into the airflow channel and to the second membrane. The support structures comprise an adhesive material that is bonded to each membrane. The support structures divide the airflow channels into subchannels.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Applicant: Oregon State University
    Inventors: Paul D. ARMATIS, Brian K. PAUL, Hailei WANG, Brian M. FRONK, Steven KAWULA, Chuankai SONG
  • Patent number: 10274421
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, redox-active molecules, a metal, or any combinations thereof. In some exemplary embodiments, optical properties of the plasmonic nanomaterials and/or the redox-active molecules combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the material or as a result of charge transfer to and from the plasmonic nanomaterial and/or the redox-active molecule as a result of interactions with the MOF material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: April 30, 2019
    Assignees: Oregon State University, U.S. Department of Energy
    Inventors: Chih-hung Chang, Ki-Joong Kim, Alan X. Wang, Yujing Zhang, Xinyuan Chong, Paul R. Ohodnicki
  • Publication number: 20190119101
    Abstract: An amorphous thin film stack can include a first layer including a combination metals or metalloids including: 5 at % to in 90 at % of a metalloid; 5 at % to 90 at % of a first metal and a second metal independently selected from titanium, vanadium, chromium, iron, cobalt, nickel, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, osmium, iridium, or platinum. The three elements may account for at least 70 at % of the amorphous thin film stack. The stack can further include a second layer formed on a surface of the first layer. The second layer can be an oxide layer, a nitride layer, or a combination thereof. The second layer can have an average thickness of 10 angstroms to 200 microns and a thickness variance no greater than 15% of the average thickness of the second layer.
    Type: Application
    Filed: June 24, 2016
    Publication date: April 25, 2019
    Applicants: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., The State of Oregon State Board of Higher Education on behalf of Oregon State University
    Inventors: James Elmer Abbott, Jr., John M McGlone, Kristopher Olsen, Roberto A Pugliese, Greg Scott Long, John Wager, Douglas A Keszler, T. Stafford Johnson, William F Stickel
  • Publication number: 20190106456
    Abstract: Disclosed herein are embodiments of compounds that can be used to target glutathione to various target sites, such as cells, mitochondria, and other organelles. Also disclosed herein are embodiments of methods for making and using the compounds. In particular disclosed embodiments, the compounds can be used to treat, ameliorate, and/or prevent diseases or conditions associated with low or reduced glutathione levels, as well as other types of diseases/conditions.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Applicant: Oregon State University
    Inventors: Joseph S. Beckman, Tory M. Hagen, Pamela R. Beilby
  • Publication number: 20190100007
    Abstract: An amorphous thin metal film can include a combination of metals or metalloids including: 5 at % to 74 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 74 at % of a first metal; 5 at % to 74 at % of a second metal; and 5 at % to 70 at % of a dopant. The first and second metals can be independently selected from the group of titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, or platinum, wherein the first metal and the second metal can be different metals. The dopant can be selected from the group of oxygen, nitrogen, or combinations thereof. The metalloid, first metal, second metal, and dopant can account for at least 70 at % of the amorphous thin metal film.
    Type: Application
    Filed: June 24, 2016
    Publication date: April 4, 2019
    Applicants: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., The State of Oregon State Board of Higher Education on behalf of Oregon State University
    Inventors: James Elmer Abbott, Jr., John M McGlone, Kristopher Olsen, Roberto A Pugliese, Greg Scott Long, Douglas A Keszler, John Wager
  • Publication number: 20190091688
    Abstract: Disclosed herein are embodiments of fluidic devices that can be used to detect the presence (or absence) of analytes in samples by providing separate and distinct chromatographic signals for particular analytes. The fluidic devices described herein are highly sensitive and user-friendly. Methods of making and using the disclosed fluidic devices also are disclosed herein.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 28, 2019
    Applicant: Oregon State University
    Inventors: Gayan C. Bandara, Christopher A. Heist, Vincent T. Remcho
  • Patent number: PP31042
    Abstract: A new and distinct Hop plant cultivar named ‘OR91331’ is disclosed, characterized by having an early mature date, resistance to downy mildew (Pseudoperonospora humuli [Miyabe & Takah.] G. W. Wilson) and powdery mildew (Podosphaera macularis [Wallr.] U. Braun & S. Takam); vigorous with high yield potential; high alpha acids; high oil content; and high amounts of some essential oil components implicated in driving beer flavor and aroma such as myrcene, cymene, methyl heptanoate, linalool, citronellol, and terpineol.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: November 12, 2019
    Assignee: Oregon State University
    Inventor: Michael Shaun Townsend