Abstract: A method and apparatus for sterilizing bone grafts, wherein the bone graft together with a quantity of sterile liquid sufficient to cover the bone graft is initially heated at a given sterilizing temperature for a constant first period of time, and is subsequently heated for a variable second period of time the duration of which is a function of the size of the bone graft. The bone graft is then cooled to room temperature, and the liquid transferred to a container. The sterilized bone graft is frozen, and the liquid in the container is analyzed for infectious diseases.
Abstract: An apparatus for sterilizing bone grafts, such as human spongiosa grafts, includes a container for receiving the bone graft together with a quantity of sterile liquid sufficient to cover the bone graft. A penetrable self-sealing closure member is provided for closing the container, whereupon the container is initially heated at a given sterilizing temperature for a constant first period of time, and is subsequently heated for a variable second period of time, the duration of which is a function of the size of the bone graft. The container is then cooled to room temperature, and a transfer tube arrangement inserted at one end through the closure member to transfer the liquid within the first container to a second container. The sterilized bone graft remaining in the first container is frozen, and the liquid in the second container is analyzed for infectious diseases.