Patents Assigned to Old Dominion University Research Foundation
  • Patent number: 11951307
    Abstract: Provided herein are methods of generating a biologically effective unipolar nanosecond electric pulse by superposing two biologically ineffective bipolar nanosecond electric pulses and related aspects, such as electroporation and/or therapeutic applications of these methods to non-invasively target electrostimulation (ES) selectively to deep tissues and organs.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: April 9, 2024
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrei G. Pakhomov, Olga N. Pakhomova, Shu Xiao
  • Patent number: 11820976
    Abstract: Systems and methods of enhancing membrane permeabilization in a cell are provided. An example method includes disposing the cell between a first electrode and a second electrode and applying a plurality of electrical pulses between the first electrode and the second electrode. In the systems and methods, the plurality of electrical pulses include at least two trains of pulses separated by an interval greater than about 10 s. Further, the amplitude of the electrical pulses is selected to be greater than about 0.2 kV/cm.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: November 21, 2023
    Assignee: Old Dominion University Research Foundation
    Inventors: Olga Pakhomova, Andrei G. Pakhomov
  • Patent number: 11672594
    Abstract: An apparatus and methods for performing ablation of myocardial tissues are disclosed. The apparatus includes a plurality of ablation electrode configurations to which nanosecond pulsed electric fields are applied. The methods relate to therapies to treat cardiac arrhythmias, such as, atrial fibrillation and scar-related ventricular tachycardia, amongst others. The affected myocardial tissues are ablated creating a plurality of lesions enabled by the nanosecond pulsed electric fields applied to either penetrating electrodes, endo-endo electrodes, or endo-epi electrodes. Different electrophysiological tests are performed to assess the application of nanosecond pulsed electric field ablation to specific desired tissue location within the heart. Test results show the potential to overcome limitations of current ablation therapies, thereby providing patients and doctors a superior treatment for cardiac arrhythmias.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: June 13, 2023
    Assignee: Old Dominion University Research Foundation
    Inventor: Christian W. Zemlin
  • Patent number: 11351368
    Abstract: Methods and apparatuses (systems, devices, etc.) for treating biological tissue to evoke one or more desirable biological and/or physiological effects using pulsed electric fields in the sub-microsecond range at very low electric field strength (e.g., less than 1 kV/cm) but at high (e.g., megahertz) frequencies.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: June 7, 2022
    Assignee: Old Dominion University Research Foundation
    Inventors: Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova, Maura Casciola
  • Patent number: 11128682
    Abstract: Aspects of the subject disclosure may include, for example, a method comprising sending context information from a mobile wireless device through a control channel to a network server; receiving a policy at the mobile wireless device from the network server, wherein the policy assigns a video streaming bit rate to the mobile wireless device based on the context information; and implementing the policy to control a video streaming session between the mobile wireless device and a media server over a data channel. The context information may include information about the mobile wireless device and/or a user of the mobile wireless device. The policy may be different for each mobile wireless device. Other embodiments are disclosed.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 21, 2021
    Assignees: AT&T Intellectual Property I, L.P., Old Dominion University Research Foundation
    Inventors: Emir Halepovic, Ibrahim Ben Mustafa, Tamer Nadeem
  • Patent number: 11043745
    Abstract: Resistively loaded dielectric biconical antenna apparatuses, including systems and devices, that may be used to transmit very short electrical pulses (e.g., nanosecond, sub-nanosecond, picosecond, etc.) into tissue non-invasively at energy levels sufficient to invoke biological changes in the tissue. These resistively loaded dielectric biconical antenna apparatuses may include a resistor ring reducing internal reflection and reducing energy loss, as well as delivering longer pulses (e.g. microsecond to millisecond) to tissue.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 22, 2021
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shu Xiao, Xianbing Zou
  • Patent number: 11020590
    Abstract: Provided herein are methods of generating a biologically effective unipolar nanosecond electric pulse by superposing two biologically ineffective bipolar nanosecond electric pulses and related aspects, such as electroporation and/or therapeutic applications of these methods to non-invasively target electrostimulation (ES) selectively to deep tissues and organs.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 1, 2021
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrei G. Pakhomov, Olga N. Pakhomova, Shu Xiao
  • Patent number: 10982206
    Abstract: Methods of enhancing membrane permeabilization in a cell are provided. A method includes disposing the cell between a first electrode and a second electrode and applying a plurality of electrical pulses between the first electrode and the second electrode. In the method, the plurality of electrical pulses include at least two trains of pulses separated by an interval greater than about 10 s. Further, the amplitude of the electrical pulses is selected to be greater than about 0.2 kV/cm.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: April 20, 2021
    Assignee: Old Dominion University Research Foundation
    Inventors: Olga Pakhomova, Andrei G. Pakhomov
  • Patent number: 10905874
    Abstract: Methods for a new, drug-free therapy for treating solid skin tumors through the application of nanosecond pulsed electric fields (“nsPEFs”) are provided. In one embodiment of the invention, the cells are melanoma cells, and the applied nsPEFs penetrate into the interior of tumor cells and cause tumor cell nuclei to rapidly shrink and tumor blood flow to stop. This new technique provides a highly localized targeting of tumor cells with only minor effects on overlying skin.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: February 2, 2021
    Assignees: Eastern Virginia Medical School, Old Dominion University Research Foundation
    Inventors: Richard Nuccitelli, Stephen J. Beebe, Karl H. Schoenbach
  • Patent number: 10881447
    Abstract: Systems and methods for treating or manipulating biological tissues are provided. In the systems and methods, a biological tissue is placed in contact with an array of electrodes. Electrical pulses are then applied between a bias voltage bus and a reference voltage bus of a distributor having switching elements associated with each of the electrodes. The switching elements provide a first contact position for coupling electrodes to bias voltage bus, a second contact position for coupling electrodes to the reference voltage bus, and a third contact position for isolating electrodes from the high and reference voltage buses. The switching elements are operated over various time intervals to provide the first contact position for first electrodes, a second contact position for second electrodes adjacent to the first electrodes, and a third contact position for a remainder of the electrodes adjacent to the first and second electrodes.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: January 5, 2021
    Assignee: Old Dominion University Research Foundation
    Inventors: Karl Schoenbach, Richard Heller
  • Patent number: 10792088
    Abstract: The methods disclosed herein are directed towards improving ablation efficiency associated with applying nanosecond electric pulses (nsEP) to tissue. In particular, applying nsEP to tissue can open pores in the cellular membranes of the tissue. These pores can be kept open longer by cooling the tissue. The combined application of nsEP and the cooling of tissue may have synergistic effects on triggering apoptosis of cells in the tissue. This allows for numerous practical benefits associated with nsEP-based tissue ablation to be realized. For instance, nsEP of lower pulse strength or lower numbers of pulses to be used, which can be provided by smaller pulse generators operating on less power.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: October 6, 2020
    Assignee: Old Dominion University Research Foundation
    Inventors: Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova
  • Patent number: 10786303
    Abstract: An apparatus and methods for performing ablation of myocardial tissues are disclosed. The apparatus includes a plurality of ablation electrode configurations to which nanosecond pulsed electric fields are applied. The methods relate to therapies to treat cardiac arrhythmias, such as, atrial fibrillation and scar-related ventricular tachycardia, amongst others. The affected myocardial tissues are ablated creating a plurality of lesions enabled by the nanosecond pulsed electric fields applied to either penetrating electrodes, endo-endo electrodes, or endo-epi electrodes. Different electrophysiological tests are performed to assess the application of nanosecond pulsed electric field ablation to specific desired tissue location within the heart. Test results show the potential to overcome limitations of current ablation therapies, thereby providing patients and doctors a superior treatment for cardiac arrhythmias.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 29, 2020
    Assignee: Old Dominion University Research Foundation
    Inventor: Christian W. Zemlin
  • Publication number: 20200177652
    Abstract: Aspects of the subject disclosure may include, for example, a method comprising sending context information from a mobile wireless device through a control channel to a network server; receiving a policy at the mobile wireless device from the network server, wherein the policy assigns a video streaming bit rate to the mobile wireless device based on the context information; and implementing the policy to control a video streaming session between the mobile wireless device and a media server over a data channel. The context information may include information about the mobile wireless device and/or a user of the mobile wireless device. The policy may be different for each mobile wireless device. Other embodiments are disclosed.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 4, 2020
    Applicants: AT&T Intellectual Property I, L.P., Old Dominion University Research Foundation
    Inventors: Emir Halepovic, Ibrahim Ben Mustafa, Tamer Nadeem
  • Patent number: 10668278
    Abstract: Catheter devices can include an elongate housing extending along a major axis, the elongate housing comprising a first end an opening. The catheter devices can also include an electrode assembly disposed in the elongate housing and including deformable electrodes with respective electrode distal ends, where the electrode distal ends each consist of respective member portions and respective tip portions. The electrode assembly is slidably movable within the housing along the major axis to allow the electrode distal end portions to transition between a first retracted position and a second extended position. The catheter device is configured such that an average distance between the tip portions in the second position is configured to be greater than an average distance between the tip portions in the first position the tip portions are positioned substantially in a same plane when the electrode assembly is in the second position.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: June 2, 2020
    Assignee: Old Dominion University Research Foundation
    Inventors: Richard Heller, Chen Yeong-Jer
  • Patent number: 10660693
    Abstract: Systems and methods for treatment of a biological tissues including target tissues and other tissues. The method includes elevating a temperature of the target tissues above a physiological temperature of the biological tissues to treatment temperature, and generating an electric field extending through at least a portion of the target tissues using a pre-defined sequence of short voltage pulses applied between at least two electrodes. In the method, the treatment temperature is maintained during the generating. Further, the pre-defined sequence is selected such that a magnitude of the electric field generated is sufficient to induce electromanipulation in the portion of the target tissues without substantially elevating of the temperature of the portion of the target tissues above the treatment temperature.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: May 26, 2020
    Assignee: Old Dominion University Research Foundation
    Inventors: Karl H. Schoenbach, Richard Heller, James Camp, Stephen P. Beebe, Shu Xiao, Amy Donate
  • Patent number: 10653880
    Abstract: A method and apparatus are provided for delivering an agent into a cell through the application of nanosecond pulse electric fields (“nsPEF's”). The method includes circuitry for delivery of an agent into a cell via known methods followed by the application of nanosecond pulse electric fields to said cell in order to facilitate entry of the agent into the nucleus of the cell. In a preferred embodiment, the present invention is directed to a method of enhancing gene expression in a cell comprising the application of nanosecond pulse electric fields to said cell. An apparatus for generating long and short pulses according to the present invention is also provided. The apparatus includes a pulse generator capable of producing a first pulse having a long duration and low voltage amplitude and a second pulse having a short duration and high voltage amplitude.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 19, 2020
    Assignees: Eastern Virginia Medical School, Old Dominion University Research Foundation
    Inventors: Stephen J. Beebe, Karl H. Schoenbach
  • Patent number: 10603503
    Abstract: Methods for terminating fibrillation in a fibrillating heart employing nanosecond pulsed electric fields (nsPEFs) are disclosed. nsPEF defibrillation demonstrates its effectiveness as a new defibrillation modality, achieving reliable defibrillation with energies that are an order of magnitude lower than those needed for conventional defibrillation (millisecond shocks with mono- and bi-phasic waveforms). Tests did not reveal any negative effect of nsPEF defibrillation on cardiac tissue, in particular, cardiac tissue treated with nsPEFs does not exhibit a baseline shift in the optical transmembrane potential signal (distinctive feature that indicates electroporation), or changes in action potential duration or shape. The mechanism of nsPEF defibrillation is likely different from conventional defibrillation since it does not rely on membrane charging but on the basis of displacement currents that flow within nanoseconds after the shock is applied.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 31, 2020
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrei G. Pakhomov, Christian W. Zemlin
  • Patent number: 10363093
    Abstract: A method of inducing local cell death in patient tissue is provided. The method includes generating first and second radiation, conveying the radiation to a focusing element, and focusing the radiation on a target with the focusing element. A system for inducing local cell death in patient tissue is also provided. The system includes a power source for generating narrowband and/or ultra-wideband radiation, and a focusing element for focusing the radiation on a target.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: July 30, 2019
    Assignee: Old Dominion University Research Foundation
    Inventors: Karl H. Schoenbach, Shu Xiao
  • Patent number: 10328259
    Abstract: A system for treatment of biological tissues is provided. The system can deliver electric pulses to a targeted region within a biological tissue. The system includes an antenna assembly and a lens. The antenna assembly is configured to generate and direct electromagnetic radiation. The lens is configured to be positioned between a surface of the biological tissue and the antenna assembly. The lens can have a plurality of lossy portions. The lens can be configured to be adjustable to create a patient-specific desired electric field distribution by selective positioning of the plurality of lossy portions within the lens.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: June 25, 2019
    Assignee: Old Dominion University Research Foundation
    Inventors: Shu Xiao, Andrei Pakhomov, Karl H. Schoenbach
  • Patent number: 10143519
    Abstract: A method of treating a patient is described herein. The method can include the steps of identifying a target that contains biological tissue and directing one or more pulses of electromagnetic radiation at the target. The pulses of electromagnetic radiation can cause a temperature increase per unit of time in the biological tissue. Additionally, the temperature increase per unit of time can cause the change in the cell function in the biological tissue and can be within a range of approximately one degree Celsius per second to approximately one degree Celsius per microsecond.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: December 4, 2018
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Karl H. Schoenbach, Shu Xiao