Patents Assigned to OmniGuide, Inc.
  • Patent number: 10492876
    Abstract: Small diameter tools are provided, and methods of use described, to facilitate less invasive surgical procedures employing laser beams. Such tools include distal tips that enhance the precise placement of optical waveguides, as well as enable cutting and dissecting procedures. A rotary coupler allows precise control of flexible conduits in which waveguides may be disposed. Waveguide tips with conical features protect waveguide ends and allow unobstructed propagation of the laser beam out of the waveguide. A preferentially bending jacket for waveguides may be used to control an orientation of a waveguide disposed therein. Surgical waveguide assemblies may include various combinations of these components.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 3, 2019
    Assignee: OmniGuide, Inc.
    Inventors: Charalambos Anastassiou, Vladimir Fuflyigin, Marc Graham, Noam Josephy, Thieu L. Le, Arnaz Singh Malhi, Robert Payne, Lori Pressman, Jesse Rusk, Gil Shapira, Max Shurgalin, Crystal Simon
  • Patent number: 10206744
    Abstract: An optical radiation delivery structure including a waveguide conduit having a surgical access portion and a handle portion. The handle portion includes a gripping portion and a waveguide lock, which is configured to have only a locked state and an unlocked state. In some embodiments, the handle portion includes a gripping portion and a counterbalance region, such that a center of mass of the waveguide conduit is disposed towards a proximal end of the waveguide conduit.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: February 19, 2019
    Assignee: OmniGuide, Inc.
    Inventors: Max Shurgalin, Marc Graham
  • Patent number: 9980775
    Abstract: An optical radiation delivery structure including a waveguide conduit having a surgical access portion and a handle portion. The handle portion includes a gripping portion and a waveguide lock, which is configured to have only a locked state and an unlocked state. In some embodiments, the handle portion includes a gripping portion and a counterbalance region, such that a center of mass of the waveguide conduit is disposed towards a proximal end of the waveguide conduit.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 29, 2018
    Assignee: OmniGuide, Inc.
    Inventors: Max Shurgalin, Marc Graham
  • Patent number: 9974562
    Abstract: A surgical tool and method of use during laparascopic surgery, the tool including a shaft having a distal region with an elastic modulus E. Distal and proximal regions of the shaft have outer diameters D1 and D2 respectively, with D2>D1. The distal region has a bend and terminates in a working feature having a distal end. The distal region has a length L1 measured in a direction parallel to the shaft axis in the proximal region, and has an offset doff relative to the proximal region where doff>D2. The elastic modulus E and the length of L1 are selected so that the working feature is insertable through an access device yet the distal region does not deflect noticeably when a force of 10 N is applied perpendicular to the distal end of the working feature.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 22, 2018
    Assignee: OmniGuide, Inc.
    Inventors: Robert Payne, Jesse Rusk, Mihai Ibanescu, Crystal Simon
  • Publication number: 20170296226
    Abstract: A surgical tool and method of use during laparoscopic surgery, the tool including a shaft having a distal region with an elastic modulus E. Distal and proximal regions of the shaft have outer diameters D1 and D2 respectively, with D2>D1. The distal region has a bend and terminates in a working feature having a distal end. The distal region has a length L1 measured in a direction parallel to the shaft axis in the proximal region, and has an offset doff relative to the proximal region where doff>D2. The elastic modulus E and the length of L1 are selected so that the working feature is insertable through an access device yet the distal region does not deflect noticeably when a force of 10 N is applied perpendicular to the distal end of the working feature.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 19, 2017
    Applicant: OmniGuide, Inc.
    Inventors: Robert Payne, Jesse Rusk, Mihai Ibanescu, Crystal Simon
  • Publication number: 20140316395
    Abstract: An optical radiation delivery structure including a waveguide conduit having a surgical access portion and a handle portion. The handle portion includes a gripping portion and a waveguide lock, which is configured to have only a locked state and an unlocked state. In some embodiments, the handle portion includes a gripping portion and a counterbalance region, such that a center of mass of the waveguide conduit is disposed towards a proximal end of the waveguide conduit.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Applicant: OmniGuide, Inc.
    Inventors: Max Shurgalin, Marc Graham
  • Publication number: 20140316384
    Abstract: A surgical tool and method of use during laparoscopic surgery, the tool including a shaft having a distal region with an elastic modulus E. Distal and proximal regions of the shaft have outer diameters D1 and D2 respectively, with D2>D1. The distal region has a bend and terminates in a working feature having a distal end. The distal region has a length L1 measured in a direction parallel to the shaft axis in the proximal region, and has an offset doff relative to the proximal region where doff>D2. The elastic modulus E and the length of L1 are selected so that the working feature is insertable through an access device yet the distal region does not deflect noticeably when a force of 10 N is applied perpendicular to the distal end of the working feature.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Applicant: OmniGuide, Inc.
    Inventors: Robert Payne, Jesse Rusk, Mihai Ibanescu, Crystal Simon
  • Patent number: 8761561
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 24, 2014
    Assignee: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Publication number: 20140088577
    Abstract: Small diameter tools are provided, and methods of use described, to facilitate less invasive surgical procedures employing laser beams. Such tools include distal tips that enhance the precise placement of optical waveguides, as well as enable cutting and dissecting procedures. A rotary coupler allows precise control of flexible conduits in which waveguides may be disposed. Waveguide tips with conical features protect waveguide ends and allow unobstructed propagation of the laser beam out of the waveguide. A preferentially bending jacket for waveguides may be used to control an orientation of a waveguide disposed therein. Surgical waveguide assemblies may include various combinations of these components.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 27, 2014
    Applicant: OmniGuide, Inc.
    Inventors: Charalambos Anastassiou, Vladimir Fuflyigin, Marc Graham, Noam Josephy, Thieu L. Le, Arnaz Singh Malhi, Robert Payne, Lori Pressman, Jesse Rusk, Gil Shapira, Max Shurgalin, Crystal Simon
  • Publication number: 20140005646
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Publication number: 20130237976
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Application
    Filed: January 31, 2013
    Publication date: September 12, 2013
    Applicant: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Publication number: 20130123766
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Application
    Filed: October 18, 2012
    Publication date: May 16, 2013
    Applicant: OmniGuide, Inc.
    Inventor: OmniGuide, Inc.
  • Publication number: 20130064515
    Abstract: An apparatus includes a light source configured to provide radiation at a wavelength and a conduit configured to direct radiation at a wavelength from the light source to a target location of a patient. The conduit includes a first optical waveguide extending along a waveguide axis, the first optical waveguide being a flexible waveguide having a hollow core, the first optical waveguide being configured to guide the radiation at through the core along the waveguide axis; and a second optical waveguide extending along the waveguide axis, the second optical waveguide having a hollow core and being coupled to the first optical waveguide to receive the radiation from the first optical waveguide and to deliver the radiation to the target location. The first optical waveguide is a photonic crystal fiber and the second optical waveguide is not a photonic crystal fiber waveguide.
    Type: Application
    Filed: December 13, 2010
    Publication date: March 14, 2013
    Applicant: OMNIGUIDE, INC.
    Inventors: Max Shurgalin, Vladimir Fuflyigin, Douglas Woodruff, Mihai Ibanescu, Lori Pressman, Charalambos Anastassiou, Soura Bhattacharyya, Yoel Fink
  • Patent number: 8320725
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 27, 2012
    Assignee: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Patent number: 8280212
    Abstract: In general, in a first aspect, the invention features photonic crystal fibers that include a core extending along a waveguide axis, a confinement region extending along the waveguide axis surrounding the core, and a cladding extending along the waveguide axis surrounding the confinement region, wherein the cladding has an asymmetric cross-section.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: October 2, 2012
    Assignee: OmniGuide, Inc.
    Inventors: James Goell, Marin Soljacic, Steven A. Jacobs, Tairan Wang, Gokhan Ulu, Burak Temelkuran, Steven G. Johnson
  • Publication number: 20110251603
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 13, 2011
    Applicant: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Patent number: 7991258
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to, guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 2, 2011
    Assignee: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Patent number: 7854149
    Abstract: In general, in one aspect, the invention features a method that includes exposing a surface to a first gas composition under conditions sufficient to deposit a layer of a first chalcogenide glass on the surface, and exposing the layer of the first chalcogenide glass to a second gas composition under conditions sufficient to deposit a layer of a second glass on the layer of the first chalcogenide glass, wherein the second glass is different from the first chalcogenide glass.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 21, 2010
    Assignee: OmniGuide, Inc.
    Inventor: Vladimir Fuflyigin
  • Publication number: 20080141724
    Abstract: In general, in one aspect, the invention features a method that includes exposing a surface to a first gas composition under conditions sufficient to deposit a layer of a first chalcogenide glass on the surface, and exposing the layer of the first chalcogenide glass to a second gas composition under conditions sufficient to deposit a layer of a second glass on the layer of the first chalcogenide glass, wherein the second glass is different from the first chalcogenide glass.
    Type: Application
    Filed: June 8, 2007
    Publication date: June 19, 2008
    Applicant: OMNIGUIDE, INC.
    Inventor: Vladimir Fuflyigin
  • Patent number: 7349589
    Abstract: In general, in one aspect, the invention features apparatus that include an assembly including a radiation input port configured to receive radiation from a radiation source and an output port configured to couple the radiation to a photonic crystal fiber, the assembly further including a retardation element positioned to modify a polarization state of the radiation received from the radiation source before it is coupled to the photonic crystal fiber.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: March 25, 2008
    Assignee: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Robert Payne, Yoel Fink, Gokhan Ulu