Patents Assigned to Omnitron International, Inc.
-
Patent number: 5851172Abstract: An afterloader for use in radiation oncology or intravascular radiotherapy comprises a wire storage mechanism for storing a radioactive-tipped sourcewire, a drive mechanism for advancing the sourcewire into a catheter or other channel implanted in a patient. A computer control system receives information from an encoder and a force sensor, which monitor the displacement of and the force exerted on the sourcewire, respectively. The displacement and force information are used to advance the wire at the fastest possible speed to the treatment site without exceeding a pre-programmed force profile designed to ensure the sourcewire does not puncture the catheter. The force profile is dynamic depending on the particular catheter being used, and catheter information may be inputted into the computer controller using a bar code or other information storage means in the catheter itself.Type: GrantFiled: May 8, 1995Date of Patent: December 22, 1998Assignee: Omnitron International, Inc.Inventors: Kenneth M. Bueche, Richard T. Thornton, Anthony J. Bradshaw
-
Patent number: 5807231Abstract: A composite source wire for use in a patient's body to irradiate preselected tissue by localized in vivo radiation with a radioactive source, via a path from a point external to the body to the site of the tissue to be irradiated. The source wire includes a thin elongate stainless steel wire with a substantially cylindrical central aperture at its distal tip, a cylindrical radioactive fiber core tightly sealed without welding within and abutting at one end the floor of the aperture and at the other end a cylindrical plug sealing the aperture at the distal tip of the source wire, the distal tip being securely enclosed about the plug and forming a tapered tip portion at that point. The source wire has an overall diameter sized to permit ease of movement through the path formed by a vessel or duct in the patient's body during advancement to the site of the tissue to be irradiated and to allow its retraction along the path from the point external to the body.Type: GrantFiled: October 31, 1995Date of Patent: September 15, 1998Assignee: Omnitron International, Inc.Inventor: Samuel F. Liprie
-
Patent number: 5624372Abstract: A composite source wire for use in a patient's body to irradiate preselected tissue by localized in vivo radiation with a radioactive source, via a path from a point external to the body to the site of the tissue to be irradiated. The source wire includes a thin elongate stainless steel wire with a substantially cylindrical central aperture at its distal tip, a cylindrical radioactive fiber core tightly sealed without welding within and abutting at one end the floor of the aperture and at the other end a cylindrical plug sealing the aperture at the distal tip of the source wire, the distal tip being securely enclosed about the plug and forming a tapered tip portion at that point. The source wire has an overall diameter sized to permit ease of movement through the path formed by a vessel or duct in the patient's body during advancement to the site of the tissue to be irradiated and to allow its retraction along the path from the point external to the body.Type: GrantFiled: January 31, 1994Date of Patent: April 29, 1997Assignee: Omnitron International, Inc.Inventor: Samuel F. Liprie
-
Patent number: 5575749Abstract: An ultra-thin iridium source is used for the treatment of cancerous tissue, particularly in areas of the human body, such as the brain, where minimization of trauma to adjacent tissue is a high priority. The source is formed of a relatively pure iridium seed encapsulated in the end region of a relatively pure unitary platinum delivery wire. The relatively pure iridium source is irradiated to a high activity level (e.g. 10 curie) even though having a short overall length (e.g. 10 millimeter) and ultra-thin diameter (e.g. about 1/8 millimeter ). The platinum delivery wire defines a substantially uniform ultra-thin cross section of approximately 0.5 millimeter diameter. The iridium source is formed within the unitary platinum delivery wire without resort to welding or other inherently unreliable attachment systems. Delivery of the high activity pure iridium source to treatment area is achieved using remote afterloader equipment.Type: GrantFiled: September 27, 1990Date of Patent: November 19, 1996Assignee: Omnitron International, Inc.Inventor: Samuel F. Liprie
-
Patent number: 5395300Abstract: A method of fabricating a radioactive core to be integrated within a source wire for use in radiation treatment of tumors within the body of a patient utilizes a thin elongate fiber of substantially pure iridium encapsulated in a straight quartz tube substantially transparent to the flux of a beam of radiation. The iridium fiber is oriented lengthwise along the axis of the tube, so that the fiber is restrained from curling. The tube and the fiber therein are irradiated with a beam directed normal to the axis of the tube while rotating the tube about the axis, to render the fiber radioactive to a predetermined level of activity. The method is adapted to produce a generally cylindrical Ir-192 source having a longitudinal axis of symmetry, a length of about one centimeter, a diameter of about 0.35 millimeter, a weight of about 20 milligrams and a radioactivity level of at least approximately 10 curies.Type: GrantFiled: June 7, 1991Date of Patent: March 7, 1995Assignee: Omnitron International, Inc.Inventor: Sam F. Liprie
-
Patent number: 5282781Abstract: A composite source wire for use in treating malignant tumors within a patient's body by localized in vivo radiation with a radioactive source, via a catheter providing a path from a point external to the body to the tumor site. The source wire includes a thin continuous cylindrical flexible elongate stainless steel tube having encased therein a backbone wire running from its proximal end to a point short of its distal end to strengthen and enhance its flexibility, a cylindrical radioactive core adjacent to the distal end in abutting relation to the backbone wire, and a cylindrical plug at the distal end in abutting relation to the other end of the core, with the backbone wire, core and plug being tightly secured within the tube and the tube being securely enclosed about the plug with a tapered tip portion formed at that point.Type: GrantFiled: October 25, 1990Date of Patent: February 1, 1994Assignee: Omnitron International Inc.Inventor: Sam F. Liprie
-
Patent number: 5267960Abstract: A device for installing a catheter in a patient's body for use in delivery of a radioactive source to and from the site of a tumor so that it may be shrunk. The device includes a catheter and apparatus for implanting the catheter through the tumor site so that the distal end of the catheter extends beyond the site, with the proximal end exposed externally of the body to permit entry and withdrawal of the radioactive source. A selectively deployable anchor at the distal end of the catheter is adapted to penetrate body tissue at the distal end beyond the tumor site when the anchor is deployed. Consequently, the distal end of the catheter will be securely anchored to maintain a substantially constant lineal depth from the proximal end of the catheter to the tumor site. The radioactive source can then be driven through the catheter to the tumor site to irradiate the tumor for a prescribed period, and then withdrawn.Type: GrantFiled: January 29, 1992Date of Patent: December 7, 1993Assignee: Omnitron International Inc.Inventors: Michael Hayman, Sam F. Liprie
-
Patent number: 5183455Abstract: Apparatus for in situ radiotherapy has a flexible catheter having a proximal end for receiving a radioisotope and a distal end for positioning the flexible catheter within a patient to be treated. An anchor, which is permanently connectable to tissues deep inside the patient, has a sealing collar connected to it which seals the distal end of the catheter. The catheter also includes a plug near the distal end which seals the distal end in addititon to the seal provided by the sealing collar. The anchor has a penetration point connected to it to assist a surgeon in implanting the catheter within a tumor. A threaded fastener on the anchor is screwed into the catheter. The flexible catheter can be released remotely from the anchor by unscrewing it. A suture eye is connected to the anchor. The suture eye may be sutured to healthy tissue within the patient when the apparatus is implanted to secure the anchor to the patient.Type: GrantFiled: November 5, 1990Date of Patent: February 2, 1993Assignee: Omnitron International, Inc.Inventors: Michael H. Hayman, Lee R. Morgan, Samuel F. Liprie
-
Patent number: 5139473Abstract: Remote controlled afterloader apparatus and method positions high activity radioactive sources through a catheter within a human body for treatment of cancerous tissue. The afterloader includes an operating console and a remotely located computer controlled wire driver. The wire driver includes active and dummy source wires and channels for the storage of such wires. Stepper motors precisely position the wires in response to computer control and data from wire position encoders. An emergency DC motor retraction system provides a high degree of safety against system malfunction. Timing arrangements are included for timing patient treatment duration and emergency wire retraction time. A turret is provided with safety locking and cross-checking systems to permit use of multiple catheters. Treatment profiles are conducted from the maximum treatment position whereby only tension or retraction forces are used to position the active wire.Type: GrantFiled: August 30, 1991Date of Patent: August 18, 1992Assignee: Omnitron International, Inc.Inventors: Anthony J. Bradshaw, Richard T. Thornton, Michael H. Hayman
-
Patent number: 5092834Abstract: Remote controlled afterloader apparatus and method positions high activity radioactive sources through a catheter within a human body for treatment of cancerous tissue. The afterloader includes an operating console and a remotely located computer controlled wire driver. The wire driver includes active and dummy source wires and channels for the storage of such wires. Stepper motors precisely position the wires in response to computer control and data from wire position encoders. An emergency DC motor retraction system provides a high degree of safety against system malfunction. Timing arrangements are included for timing patient treatment duration and emergency wire retraction time. A turret is provided with safety locking and cross-checking systems to permit use of multiple catheters. Treatment profiles are conducted from the maximum treatment position whereby only tension or retraction forces are used to position the active wire.Type: GrantFiled: October 12, 1990Date of Patent: March 3, 1992Assignee: Omnitron International, Inc.Inventors: Anthony J. Bradshaw, Richard T. Thornton, Michael H. Hayman
-
Patent number: 5084002Abstract: An ultra-thin iridium source is used for the treatment of cancerous tissue, particularly in areas of the human body, such as the brain, where minimization of trauma to adjacent tissue is a high priority. The source is formed of a relatively pure iridium seed encapsulated in the end region of a relatively pure unitary platinum delivery wire. The relatively pure iridium source is irradiated to a high activity level (e.g. 10 curie) even though having a short overall length (e.g. 10 millimeter) and ultra-thin diameter (e.g. about 1/8 millimeter). The platinum delivery wire defines a substantially uniform ultra-thin cross section of approximately 0.5 millimeter diameter. The iridium source is formed within the unitary platinum delivery wire without resort to welding or other inherently unreliable attachment systems. Delivery of the high activity pure iridium source to treatment area is achieved using remote afterloader equipment.Type: GrantFiled: August 4, 1988Date of Patent: January 28, 1992Assignee: Omnitron International, Inc.Inventor: Samuel F. Liprie