Abstract: A two-stroke cycle, turbo-driven, opposed-piston engine with one or more ported cylinders and uniflow scavenging has no supercharger. The engine includes a high pressure EGR loop and a pump in the EGR loop to boost the pressure of the recirculated exhaust products.
Abstract: An apparatus for harvesting electrical power from mechanical energy is described. The apparatus includes: a flux path. The flux path includes: a magnetic material having a magnetic property that is a function of stress on the magnetic material; a first magnetically conductive material proximate the magnetic material; a magnet in the flux path, wherein a magnetomotive force of the magnet causes magnetic flux; and a component configured to transfer changes in load caused by an external source to the magnetic material.
Type:
Application
Filed:
July 3, 2012
Publication date:
July 11, 2013
Applicant:
OSCILLA POWER INC.
Inventors:
Balakrishnan Nair, Jesse Alan Nachlas, Andrew Joseph Gill, Zachary Murphree
Abstract: In a gaseous-fuelled stoichiometric compression ignition internal combustion engine, a pilot fuel is injected directly into the combustion chamber to help initiate a multi-point ignition. The engine provides performance improvements approaching those of high pressure direct injection engines but with less complexity because the gaseous fuel is introduced into the intake air subsystem at relatively low pressure and as a result of the stoichiometric combustion, the low oxygen content in the combustion products exiting the combustion chamber allows the use of a three-way catalyst instead of other after treatment arrangements normally associated with conventional compression ignition engines that require the addition of a reductant.
Abstract: A direct current to pulse amplitude modulated (“PAM”) current converter, denominated a “PAMCC”, is connected to an individual source of direct current. The PAMCC receives direct current and provides pulse amplitude modulated current at its three output terminals, wherein the current of each terminal is one hundred twenty degrees out of phase with the other two terminals. The pulses are produced at a high frequency relative to the signal modulated on a sequence of pulses. The signal modulated onto a sequence of pulses may represent portions of a lower frequency sine wave or other lower frequency waveform, including DC. When each phased output is connected in parallel with the outputs of similar PAMCCs an array of PAMCCs is formed, wherein each voltage phased output pulse is out of phase with respect to a corresponding current output pulse of the other PAMCCs.
Abstract: The methods in this disclosure allow for the identification, selection, and arrangement of cells, blocks, and modules in large scale battery systems, such as electric vehicle battery systems. An example embodiment of the present invention allows for the identification of the cells, blocks, and modules with a unique identifier or associated parameter (e.g., internal resistance contributions or capacity). Additionally, to form a block, cells may be selected from a group of capacity-range sorting bins. Based on a parameter of the cell, a pseudo-number generator may be also be used to select cells from an available inventory of cells as maintained in a cell database based. Cells may also be placed in a block for uniform effective cell impedance and even cell aging while minimizing overall block capacity degradation caused by cycling. Block capacities may also be computed based on a known average temperature gradient during operation.
Type:
Grant
Filed:
August 31, 2010
Date of Patent:
July 9, 2013
Assignee:
Boston-Power, Inc.
Inventors:
Per Onnerud, Jan-Roger Linna, John Warner, Chad Souza, Eckart Jansen
Abstract: A synchronous reluctance motor system is disclosed. The system may generally comprise an input power source that provides alternating phase current and voltage (e.g., AC current). The input power may be further conditioned through a variable voltage conditioner. The system may also include capacitive elements connected in series with the motor windings.
Abstract: Methods are disclosed for generating electrical power from a compound comprising carbon, oxygen, and hydrogen. Water is combined with the compound to produce a wet form of the compound. The wet form of the compound is transferred into a reaction processing chamber. The wet form of the compound is heated within the reaction chamber such that elements of the compound dissociate and react, with one reaction product comprising hydrogen gas. The hydrogen gas is processed to generate electrical power.
Abstract: Electric motor cluster consisting of several stator sections each possessing a minimum of two salient pole projections, wound with power windings, and each section containing a single rotor. Each individual motor is angularly displaced one from the other, while mounted within a common housing, and geared together such that each motor section contributes to the rotation of a common output shaft. Each motor comprises at least one stator and one rotor section, such that each rotor section is associated with a specific stator section. The lateral axis of each rotor section is disposed at an oblique angle with respect to the axis of the shaft for that particular motor.
Abstract: A system and method is disclosed for generating power from thermal energy stored in a fluid extracted during the recovery of heavy oil. The method includes the steps of vaporizing a working fluid in a binary cycle using thermal energy stored in the extracted fluid, converting the vaporized working fluid total energy into mechanical power using a positive displacement expander, and condensing the vaporized working fluid back to a liquid phase.
Type:
Grant
Filed:
June 9, 2009
Date of Patent:
July 2, 2013
Assignee:
Geotrend Power Inc.
Inventors:
Alexandre A. Borissov, Anatoly A. Borissov
Abstract: In an opposed piston, compression ignition engine two crankshafts are single-side mounted with respect to a row of cylinders, which is to say that the crankshafts are mounted so that their axes of rotation lie in a plane that is spaced apart from and parallel to a plane in which the axes of the cylinders lie. Each piston of the engine is coupled to one of the crankshafts by a single linkage guided by a crosshead. The piston has a piston rod affixed at one end to the piston. The other end of the piston rod is affixed to the crosshead pin. One end of a connecting rod swings on the pin and the other end is coupled to a throw on a crankshaft. Each crosshead is constrained to reciprocate between fixed guides, in alignment with the piston rod to which it is coupled.
Abstract: A gaseous-fuelled internal combustion engine and a method of engine operation improve combustion stability and reducing emissions of NOx, PM, and unburned hydrocarbons. The method comprises fuelling an internal combustion engine with hydrogen and natural gas, which can be directly injected into the combustion chamber together or introduced separately. Of the total gaseous fuel delivered to the engine, at least 5% by volume at standard temperature and pressure is hydrogen. For at least one engine operating condition, the ratio of fuel rail pressure to peak in-cylinder pressure is at least 1.5:1. A fuel injection valve introduces the gaseous fuel mixture directly into the combustion chamber. Two separate fuel injection valves could also introduce the methane and hydrogen separately. An electronic controller controls timing for operating the fuel injection valve(s). The engine has a preferred compression ratio of at least 14:1.
Type:
Grant
Filed:
January 9, 2012
Date of Patent:
June 25, 2013
Assignees:
Westport Power Inc., The University of British Columbia
Inventors:
Sandeep Munshi, Gordon P. McTaggart-Cowan, Steven N. Rogak, W. Kendal Bushe
Abstract: A floating wind turbine platform includes a floatation frame that includes at least three columns that are coupled to each other with horizontal main beams. A wind turbine tower is mounted above a tower support column to simplify the system construction and improve the structural strength. The turbine blades are coupled to a nacelle that rotates on top of the tower. The turbine's gearbox generator and other electrical gear can be mounted either traditionally in the nacelle, or lower in the tower or in the top of the tower-supporting column. The floatation frame includes a water ballasting system that pumps water between the columns to keep the tower in a vertical alignment regardless of the wind speed. Water-entrapment plates are mounted to the bottoms of the columns to minimize the rotational movement of the floatation frame due to waves.
Abstract: A power delivery rate from a renewable power source to a load is managed by determining, by processing circuitry, a change in a power generation rate, determining, by the processing circuitry, whether the change in the power generation rate exceeds a limit, and then, adjusting, by control circuitry, a power transfer rate to or from a power storage device, such that the adjusting is sufficient to prevent the power delivery rate from exceeding the limit.
Type:
Grant
Filed:
May 4, 2010
Date of Patent:
June 25, 2013
Assignee:
Xtreme Power Inc.
Inventors:
Carlos James Coe, Aeron Neils Hurst, Mark Isaac Hardin, Matthew Clayton Such, Richard Thomas Jennings
Abstract: A method for operating a fuel cell system includes electrically coupling a fuel cell stack to an energy storage device and an electrical demand by a load device. A controller is coupled to the fuel cell stack, the energy storage device, and the load device via a communications connection. The controller obtains information relative to an operation of at least one of the fuel cell stack and the energy storage device and the controller controls an operation of the load device based on the information.
Abstract: An engine system comprises a fuel processor that is supplied with air and a fuel reactant stream to produce a hydrogen-containing gas stream. The fuel processor comprises a mounting manifold, a housing, and an internal reaction chamber. The mounting manifold can fluidly interconnect an upstream engine exhaust conduit and a downstream engine exhaust conduit via internal passageways in the manifold, attach and position the fuel processor within the engine exhaust conduit, and fluidly connect external reactant supply conduits to the internal reaction chamber of the fuel processor.
Abstract: Systems and methods are disclosed to control a buck converter by performing adaptive digital pulse width modulation (ADPWM) with a plurality of upper power transistors each uniquely controlled to enable greater than 100% duty cycle for the buck converter and a lower power transistor coupled to the plurality of upper power transistors; and driving an inductor having one end coupled to the lower power transistor and the upper power transistors.
Abstract: A wind turbine and braking system. A wind turbine may include a tower and a nacelle coupled to the tower, the nacelle rotatable with respect to the tower about a rotation axis. A collar may be centered on the rotation axis and rigidly connected to one of the nacelle and the tower. A first cable may be wrapped about the collar in a first direction. A first tensioning device may be anchored to a structure of the other of the nacelle and the tower, the first tensioning device configured to selectively apply tension to a first end of the first cable to apply a braking torque to the collar.
Abstract: A yaw actuation and braking system and method for controlling a yaw position of a wind turbine nacelle with respect to a tower. A brake rotor may be rigidly connected to one of the tower and the nacelle. A first brake caliper may be disposed to selectively close upon the brake rotor. A first linear actuator may be coupled between the first brake caliper and the other of the tower and the nacelle.
Abstract: A wireless electric field power transmission system comprises: a transmitter comprising a transmitter antenna, the transmitter antenna comprising at least two conductors defining a volume therebetween; and at least one receiver, wherein the transmitter antenna transfers power wirelessly via electric field coupling when the at least one receiver is within the volume.