Patents Assigned to OncoSec Medical Incorporated
  • Patent number: 11713467
    Abstract: Provided are plasmid vector constructs encoding multiple immunomodulatory proteins where each protein or component thereof can be expressed utilizing appropriate promotors and/or translation modifiers. Additional immunomodulatory proteins and genetic adjuvants containing shared tumor antigens can be added to further therapeutic potential as well as allow tracking of therapeutic treatment. Also provides are methods of expressing the plasmid constructs.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 1, 2023
    Assignee: OncoSec Medical Incorporated
    Inventors: Jean Campbell, David A. Canton, Robert H. Pierce
  • Patent number: 11564999
    Abstract: The present invention provides for the intratumoral delivery of at least one immunostimulatory cytokine in combination with at least one checkpoint inhibitor. In particular, it provides delivery of a plasmid encoding the immunostimulatory cytokine using intratumoral electroporation. The checkpoint inhibitor may be administered systemically or encoded on a plasmid and delivered using intratumoral electroporation. The checkpoint inhibitor may be delivered contemporaneously with or after treatment with the immunomodulatory cytokine.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 31, 2023
    Assignee: OncoSec Medical Incorporated
    Inventors: Robert H. Pierce, Adil Daud
  • Patent number: 11318305
    Abstract: An adaptive control method for controlling EP pulse parameters during electroporation (EP) of cells or tissue using an EP system includes providing a system for adaptive control to optimize EP pulse parameters including EP pulse parameters, applying voltage and current excitation signals to the cells, obtaining data from the current and voltage measurements, and processing the data to separate the desirable data from the undesirable data, extracting relevant features from the desirable data, applying at least a portion of the relevant features to a trained diagnostic model, estimating EP pulsing parameters based on an outcome of the applied relevant features, where the initialized EP pulsing parameters are based on the trained model and the relevant features, to optimize the EP pulsing parameters, and applying, by the generator, a first EP pulse based on the first pulsing parameters.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 3, 2022
    Assignee: ONCOSEC MEDICAL INCORPORATED
    Inventors: Arya Bahrami, Douglas W. Brown, Jean Campbell, Richard J. Connolly, Andy E. Denison, Christopher S. Hayden, Eric T. Johnson, Robert H. Pierce, Robert R. Ragland
  • Patent number: 11071860
    Abstract: Example systems, apparatuses, methods, and computer program products are disclosed for electroporating cells in a tissue using a set of voltage pulses generated by capacitor charge circuitry based on a voltage supply. An example method includes continuously monitoring a set of characteristics of the voltage supply and the set of voltage pulses; generating a first set of monitor signals based on the set of characteristics; detecting a first fault condition based on the first set of monitor signals; and generating a first crowbar trigger activation signal. The example computer method further includes: detecting a second fault condition based on a second set of monitor signals generated based on the first set of monitor signals; and generating a second crowbar trigger activation signal. Subsequently, the example computer method includes electrically disconnecting the capacitor charge circuitry from electroporation electrode circuitry based on either the first or second crowbar trigger activation signal.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: July 27, 2021
    Assignee: ONCOSEC MEDICAL INCORPORATED
    Inventors: John Rodriguez, Jason Jin, Brandon Dang Phung, Wesley Joel Ericson, Jodie Marie Houdek, Jonathan Joseph McIntosh, Carlos E. Gonzalez, Anthony Steven Nault
  • Patent number: 11007365
    Abstract: This invention concerns treating apparently normal tissue surrounding sites of cancerous tumors so as to reduce both the probability of a recurrence of cancer at and near the site of a cancerous tissue, and to reduce the amount of apparently healthy tissue that is usually excised along with the tumor, thereby providing a substantial benefit to the cancer patient by eliminating or delaying tumor recurrence and sparing normal tissue for its functionality and for avoiding unnecessary disfigurement.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: May 18, 2021
    Assignee: ONCOSEC MEDICAL INCORPORATED
    Inventors: Paul Goldfarb, Dietmar Rabussay
  • Patent number: 10426847
    Abstract: The present invention provides for the intratumoral delivery of at least one immunostimulatory cytokine in combination with at least one checkpoint inhibitor. In particular, it provides delivery of a plasmid encoding the immunostimulatory cytokine using intratumoral electroporation. The checkpoint inhibitor may be administered systemically or encoded on a plasmid and delivered using intratumoral electroporation. The checkpoint inhibitor may be delivered contemporaneously with or after treatment with the immunomodulatory cytokine.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 1, 2019
    Assignee: OncoSec Medical Incorporated
    Inventors: Robert H. Pierce, Adil Daud
  • Publication number: 20190153469
    Abstract: Provided are plasmid vector constructs encoding multiple immunomodulatory proteins where each protein or component thereof can be expressed utilizing appropriate promotors and/or translation modifiers. Additional immunomodulatory proteins and genetic adjuvants containing shared tumor antigens can be added to further therapeutic potential as well as allow tracking of therapeutic treatment. Also provides are methods of expressing the plasmid constructs.
    Type: Application
    Filed: December 16, 2016
    Publication date: May 23, 2019
    Applicant: OncoSec Medical Incorporated
    Inventors: Jean Campbell, David A. Canton, Robert H. Pierce
  • Patent number: 9037230
    Abstract: This invention concerns treating apparently normal tissue surrounding sites of cancerous tumors so as to reduce both the probability of a recurrence of cancer at and near the site of a cancerous tissue, and to reduce the amount of apparently healthy tissue that is usually excised along with the tumor, thereby providing a substantial benefit to the cancer patient by eliminating or delaying tumor recurrence and sparing normal tissue for its functionality and for avoiding unnecessary disfigurement.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: May 19, 2015
    Assignee: OncoSec Medical Incorporated
    Inventors: Paul Goldfarb, Dietmar Rabussay
  • Patent number: 9020605
    Abstract: An electroporation device produces electric signals that may be adjusted in response to a cover area of electrodes, so that the electric signals are tolerable when delivered to cells within the cover area. The electroporation device can include an applicator, a plurality of electrodes extending from the applicator, a power supply in electrical communication with the electrodes, and a guide member coupled to the electrodes. The electrodes are associated with a cover area. The power supply is configured to generate one or more electroporating signals to cells within the cover area. The guide member can be configured to adjust the cover area of the electrodes. In some embodiments, the electrical signals may include opposing waveforms that produce a resultant interference waveform to effectively target the cover area, and each waveform may be a unipolar waveform or a bipolar waveform.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 28, 2015
    Assignee: OncoSec Medical Incorporated
    Inventors: Brian McCluskey, Punit Dhillon