Patents Assigned to Oncotherapy Science, Inc.
  • Publication number: 20200155596
    Abstract: The present invention provides KOC1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: ONCOTHERAPY SCIENCE, INC.
    Inventors: Takuya TSUNODA, Ryuji OSAWA, Sachiko YAMASHITA, Tomohisa WATANABE, Tetsuro HIKICHI
  • Publication number: 20200093849
    Abstract: The present invention provides URLC10-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: December 9, 2019
    Publication date: March 26, 2020
    Applicant: ONCOTHERAPY SCIENCE, INC.
    Inventors: Takuya Tsunoda, Ryuji Osawa, Sachiko Yamashita, Tomohisa Watanabe, Tetsuro Hikichi
  • Patent number: 10597431
    Abstract: The present invention provides isolated peptides or the fragments derived from SEQ ID NO: 45, which bind to an HLA antigen and induce cytotoxic T lymphocytes (CTL). The peptides may include the above mentioned amino acid sequence with substitution deletion, or addition of one, two, or several amino acids sequences. The invention also provides pharmaceutical compositions including these peptides. The peptides of this invention can be used for diagnosing or treating cancer.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: March 24, 2020
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Takuya Tsunoda, Ryuji Ohsawa, Sachiko Yoshimura, Tomohisa Watanabe, Yusuke Nakamura, Yoichi Furukawa
  • Patent number: 10576097
    Abstract: The present invention provides URLC10-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: March 3, 2020
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Takuya Tsunoda, Ryuji Osawa, Sachiko Yamashita, Tomohisa Watanabe, Tetsuro Hikichi
  • Patent number: 10576102
    Abstract: The present invention provides KOC1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: March 3, 2020
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Takuya Tsunoda, Ryuji Osawa, Sachiko Yamashita, Tomohisa Watanabe, Tetsuro Hikichi
  • Patent number: 10508109
    Abstract: The present invention directs to a compound represented by formula (I).
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: December 17, 2019
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Yo Matsuo, Shoji Hisada, Yusuke Nakamura, Anjan Chakrabarti, Manish Rawat, Sanjay Rai, Arvapalli Venkata Satyanarayana, Zhiyong Duan, Arindam Talukdar, Srinivas Ravula, Helene Decornez
  • Publication number: 20190185575
    Abstract: The present invention relates to monoclonal antibodies against MELK. Furthermore, the present invention provides methods for diagnosing MELK-associated diseases using the antibodies, methods for detecting the MELK protein, methods for determining the drug efficacy following treatment with a MELK inhibitor, methods of screening for subjects to whom a MELK inhibitor has a high therapeutic effect, and diagnostic reagents containing the antibodies.
    Type: Application
    Filed: August 25, 2017
    Publication date: June 20, 2019
    Applicant: ONCOTHERAPY SCIENCE, INC.
    Inventors: Yosuke HARADA, Suyoun CHUNG, Yusuke NAKAMURA
  • Publication number: 20190060433
    Abstract: Isolated KIF20A-derived epitope peptides having Th1 cell inducibility are disclosed herein. Such peptides can be recognized by MHC class II molecules and induce Th1 cells. In preferred embodiments, such a peptide of the present invention can promiscuously bind to MHC class II molecules and induce KIF20A-specific cytotoxic T lymphocytes (CTLs) in addition to Th1 cells. Such peptides are thus suitable for use in enhancing immune response in a subject, and accordingly find use in cancer immunotherapy, in particular, as cancer vaccines. Also disclosed herein are polynucleotides that encode any of the aforementioned peptides, APCs and Th1 cells induced by such peptides and methods of induction associated therewith. Pharmaceutical compositions that comprise any of the aforementioned components as active ingredients find use in the treatment and/or prevention of cancers or tumors.
    Type: Application
    Filed: November 5, 2018
    Publication date: February 28, 2019
    Applicant: OncoTherapy Science, Inc.
    Inventors: Yasuharu Nishimura, Yusuke Tomita, Ryuji Osawa
  • Patent number: 10206989
    Abstract: Isolated CDCA1-derived epitope peptides having Th1 cell inducibility are disclosed herein. Such peptides can be recognized by MHC class II molecules and induce Th1 cells. In preferred embodiments, such a peptide of the present invention can promiscuously bind to MHC class II molecules and induce CDCA1-specific cytotoxic T lymphocytes (CTLs) in addition to Th1 cells. Such peptides are thus suitable for use in enhancing immune response in a subject, and accordingly find use in cancer immunotherapy, in particular, as cancer vaccines. Also disclosed herein are polynucleotides that encode any of the aforementioned peptides, APCs and Th1 cells induced by such peptides and methods of induction associated therewith. Pharmaceutical compositions that comprise any of the aforementioned components as active ingredients find use in the treatment and/or prevention of cancers or tumors.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 19, 2019
    Assignee: OncoTherapy Science, Inc.
    Inventors: Yasuharu Nishimura, Yusuke Tomita, Ryuji Osawa
  • Publication number: 20190023739
    Abstract: The present invention provides peptides containing a structure in which a portion of the dominant negative peptide of BIG3 which inhibits the interaction between BIG3 and PHB2 is substituted with stapling structure(s). Peptides of the present invention have excellent cell growth inhibitory actions. Furthermore, their cell growth inhibitory actions continue for a longer time than the actions of peptides without stapling structures. Therefore, these peptides have features suitable for clinical applications in cancer therapy.
    Type: Application
    Filed: January 16, 2017
    Publication date: January 24, 2019
    Applicants: TOKUSHIMA UNIVERSITY, ONCOTHERAPY SCIENCE, INC.
    Inventors: TOYOMASA KATAGIRI, TAKASHI MIYAMOTO, RIE HAYASHI
  • Patent number: 10172926
    Abstract: Isolated KIF20A-derived epitope peptides having Th1 cell inducibility are disclosed herein. Such peptides can be recognized by MHC class II molecules and induce Th1 cells. In preferred embodiments, such a peptide of the present invention can promiscuously bind to MHC class II molecules and induce KIF20A-specific cytotoxic T lymphocytes (CTLs) in addition to Th1 cells. Such peptides are thus suitable for use in enhancing immune response in a subject, and accordingly find use in cancer immunotherapy, in particular, as cancer vaccines. Also disclosed herein are polynucleotides that encode any of the aforementioned peptides, APCs and Th1 cells induced by such peptides and methods of induction associated therewith. Pharmaceutical compositions that comprise any of the aforementioned components as active ingredients find use in the treatment and/or prevention of cancers or tumors.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: January 8, 2019
    Assignee: OncoTherapy Science, Inc.
    Inventors: Yasuharu Nishimura, Yusuke Tomita, Ryuji Osawa
  • Publication number: 20180362581
    Abstract: The present invention provides MPHOSPH1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: October 6, 2016
    Publication date: December 20, 2018
    Applicant: OncoTherapy Science, Inc.
    Inventors: Sachiko YAMASHITA, Tetsuro HIKICHI
  • Publication number: 20180346512
    Abstract: The present invention provides FOXM1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: October 6, 2016
    Publication date: December 6, 2018
    Applicant: OncoTherapy Science, Inc.
    Inventors: Sachiko YAMASHITA, Tetsuro Hikichi
  • Patent number: 10092634
    Abstract: Peptide vaccines against cancer are described herein. In particular, epitope peptides derived from the UBE2T that elicit CTLs are provided. Isolated antigen-presenting cells with CTL inducibility and CTLs that target such peptides, as well as methods for inducing the antigen-presenting cell, or CTL are also provided. The present invention further provides pharmaceutical compositions containing such epitope peptides derived from UBE2T or polynucleotides encoding the polypeptides as active ingredients. Furthermore, the present invention provides methods for the treatment and/or prophylaxis of (i.e., preventing) cancers (tumors), and/or the prevention of a postoperative recurrence thereof, as well as methods for inducing CTLs, methods for inducing anti-tumor immunity, using the epitope peptides derived from UBE2T, polynucleotides encoding the peptides, or antigen-presenting cells presenting the peptides, or the pharmaceutical compositions of the present invention.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: October 9, 2018
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Takuya Tsunoda, Ryuji Osawa, Sachiko Yoshimura, Tomohisa Watanabe
  • Publication number: 20180222941
    Abstract: The present invention provides DEPDC1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: August 10, 2016
    Publication date: August 9, 2018
    Applicant: OncoTherapy Science, Inc.
    Inventors: Sachiko YAMASHITA, Tetsuro HIKICHI
  • Patent number: 9975935
    Abstract: The present invention provides isolated peptides or the fragments derived from SEQ ID NO: 45, which bind to an HLA antigen and induce cytotoxic T lymphocytes (CTL). The peptides may include the above mentioned amino acid sequence with substitution deletion, or addition of one, two, or several amino acids sequences. The invention also provides pharmaceutical compositions including these peptides. The peptides of this invention can be used for diagnosing or treating cancer.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: May 22, 2018
    Assignee: OncoTherapy Science, Inc.
    Inventors: Takuya Tsunoda, Ryuji Ohsawa, Sachiko Yoshimura, Tomohisa Watanabe, Yusuke Nakamura, Yoichi Furukawa
  • Publication number: 20180079791
    Abstract: The present invention provides CDCA1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: July 31, 2015
    Publication date: March 22, 2018
    Applicant: ONCOTHERAPY SCIENCE, INC.
    Inventors: TAKUYA TSUNODA, RYUJI OSAWA, SACHIKO YAMASHITA, TOMOHISA WATANABE
  • Patent number: 9896492
    Abstract: Isolated peptides derived from SEQ ID NO: 50 and fragments thereof that bind to an HLA antigen and induce cytotoxic T lymphocytes (CTL) and thus are suitable for use in the context of cancer immunotherapy, more particularly cancer vaccines are described herein. The inventive peptides encompasses both the above mentioned amino acid sequences and modified versions thereof, in which one, two, or several amino acids sequences substituted, deleted, added or inserted, provided such modified versions retain the requisite cytotoxic T cell inducibility of the original sequence. Further provided are nucleic acids encoding any of the aforementioned peptides as well as pharmaceutical agents, substances and/or compositions that include or incorporate any of the aforementioned peptides or nucleic acids.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 20, 2018
    Assignee: OncoTherapy Science, Inc.
    Inventors: Yusuke Nakamura, Takuya Tsunoda, Ryuji Ohsawa, Sachiko Yoshimura, Tomohisa Watanabe
  • Publication number: 20180042954
    Abstract: The present invention provides URLC10-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 15, 2018
    Applicant: ONCOTHERAPY SCIENCE, INC.
    Inventors: TAKUYA TSUNODA, RYUJI OSAWA, SACHIKO YAMASHITA, TOMOHISA WATANABE, TETSURO HIKICHI
  • Patent number: 9849166
    Abstract: The present invention provides isolated epitope peptides derived from TOPK and immunogenic fragments thereof have an ability to induce cytotoxic T lymphocytes (CTLs) and thus are suitable for use in cancer immunotherapy, more particularly as cancer vaccines. The peptides of the present invention encompass both of peptides including a TOPK-derived amino acid sequence and modified versions thereof, in which one, two, or several amino acids are substituted, deleted, inserted and/or added, provided such modified versions have CTL inducibility. Further provided are polynucleotides encoding any of the aforementioned peptides as well as pharmaceutical compositions that include any of the aforementioned peptides or polynucleotides. The peptides, polynucleotides, and pharmaceutical compositions of this invention find particular utility in either or both of the treatment and prevention of a number of cancers.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: December 26, 2017
    Assignee: OncoTherapy Science, Inc.
    Inventors: Yusuke Nakamura, Takuya Tsunoda, Ryuji Osawa, Sachiko Yoshimura, Tomohisa Watanabe, Gaku Nakayama