Abstract: The present invention provides a method for inhibiting growth of a cancer cell, particularly a renal cell carcinoma, by contacting the cell with a composition composed of an HIG2 siRNA or HIG2 antibody. Methods of diagnosing renal cell cancer are also provided within the present invention.
Abstract: The present invention provides therapeutic agents and methods for treating cancer using the polypeptides posed of an amino acid sequence which includes a polypeptide fragment of DEPDC1. The polypeptides of the present invention can be introduced into cancer cells by modifying the polypeptides with transfection agents such as poly-arginine. Furthermore, the present invention provides methods of screening for therapeutic agents or compounds useful in inhibition of the DEPDC1/ZN-F224 complex formation or the treatment of cancer. The present invention also provides siRNAs targeting the ZNF224 gene, which are suggested to be useful in the treatment of bladder cancer.
Abstract: Disclosed are methods for detecting non-small cell lung cancer (NSCLC) using differentially expressed genes KIF11, GHSR1b, NTSR1, and FOXM1. Also disclosed are methods of identifying compounds for treating and preventing NSCLC, based on the interaction between KOC1 and KIF11, or NMU and GHSR1b or NTSR1.
Abstract: According to the present invention, peptides having the amino acid sequence of SEQ ID NOs: 14, 21, 23, 27, 36, 46, 57, 60 and 62 were demonstrated to have cytotoxic T lymphocyte (CTL) inducibility. Therefore, the present invention provides a peptide having the amino acid sequence selected from among SEQ ID NOs: 14, 21, 23, 27, 36, 46, 57, 60 and 62. The peptide can include one, two, or several amino acid substitutions, deletions, insertions, or additions so long as its CTL inducibility is retained. Furthermore, the present invention provides pharmaceutical agents for the treatment and/or prophylaxis of cancers, and/or prevention of postoperative recurrence thereof, which contain any of these peptides. Pharmaceutical agents of this invention include vaccines.
Abstract: The present invention relates to the use of cytoxicity based on the effector function of anti-EphA4 antibodies. Specifically, the present invention provides methods and pharmaceutical compositions that comprise an anti-EphA4 antibody as an active ingredient for damaging EphA4-expressing cells using antibody effector function. Since EphA4 is strongly expressed in pancreatic cancer cells, the present invention is particularly useful in pancreatic cancer therapies.
Abstract: Peptide vaccines against cancer are described herein. In particular, the present invention describes epitope peptides derived from IQGAP3 that elicit CTLs. The present invention also provides established CTLs that specifically recognize HLA-A24 or HLA-A02 positive target cells pulsed with the peptides. Antigen-presenting cells and exosomes that present any of the peptides, as well as methods for inducing antigen-presenting cells are also provided. The present invention further provides pharmaceutical agents containing the IQGAP3 polypeptides or polynucleotides encoding thereof, as well as exosomes and antigen-presenting cells as active ingredients. Furthermore, the present invention provides methods for treating and/or prophylaxis of (i.e.
Abstract: Objective methods for detecting and diagnosing bladder cancer (BLC) are described herein. In one embodiment, the diagnostic method involves determining the expression level of a BLC-associated gene that discriminates between BLC cells and normal cells. The present invention further provides means for predicting and preventing bladder cancer metastasis using BLC-associated genes having unique altered expression patterns in bladder cancer cells with lymph-node metastasis. Finally, the present invention provides methods of screening for therapeutic agents useful in the treatment of bladder cancer, methods of treating bladder cancer and method for vaccinating a subject against bladder cancer. In particular, the present application provides novel human genes C2093, B5860Ns and C6055s whose expression is markedly elevated in bladder cancers.
Abstract: An objective of the present invention is to provide a means for enabling cancer immunotherapy that targets approximately 30% of various cancer patients that highly express forkhead box M1 (FOXM1) among the Japanese, by identifying FOXM1-derived peptides that can activate cancer cell-damaging human killer T cells by binding to HLA-A2. The present invention provides a peptide of (A) or (B) below: (A) a peptide including the amino acid sequence of any one of SEQ ID NOs: 1 to 3; (B) a peptide which includes the amino acid sequence of any one of SEQ ID NOs: 1 to 3, wherein one, two, or several amino acid(s) are substituted, deleted, inserted, and/or added, and wherein the peptide shows cytotoxic (killer) T cell-inducing activity.
Abstract: Peptide vaccines against cancer are described herein. In particular, the present invention describes epitope peptides derived from CDCA1 that elicit CTLs. The present invention also provides established CTLs that specifically recognize HLA-A24 positive target cells pulsed with the peptides. Antigen-presenting cells and exosomes that present any of the peptides, as well as methods for inducing antigen-presenting cells are also provided. The present invention further provides pharmaceutical agents containing the CDCA1 polypeptides or polynucleotides encoding thereof, as well as exosomes and antigen-presenting cells as active ingredients. Furthermore, the present invention provides methods for treating and/or prophylaxis of (i.e.
Abstract: Peptide vaccines against cancer are described herein. In particular, the present invention describes epitope peptides derived from MYBL2 that elicit CTLs. The present invention also provides established CTLs that specifically recognize HLA-A24 positive target cells pulsed with the peptides. Antigen-presenting cells and exosomes that present any of the peptides, as well as methods for inducing antigen-presenting cells are also provided. The present invention further provides pharmaceutical agents containing the MYBL2 polypeptides or polynucleotides encoding thereof, as well as exosomes and antigen-presenting cells as active ingredients. Furthermore, the present invention provides methods for treating and/or prophylaxis of (i.e.
Abstract: The present invention provides a peptide of the following (A) or (B): (A) a peptide including an amino acid sequence of SEQ ID NO: 1 or 2; (B) a peptide including an amino acid sequence of SEQ ID NO 1 or 2, wherein one, two, or several amino acid(s) are substituted, deleted, inserted, and/or added, and wherein the peptide has an activity to induce killer T cells.
Abstract: Disclosed are methods for detecting non-small cell lung cancer (NSCLC) using differentially expressed genes KIF11, GHSR1b, NTSR1, and FOXM1. Also disclosed are methods of identifying compounds for treating and preventing NSCLC, based on the interaction between KOC1 and KIF11, or NMU and GHSR1b or NTSR1.
Abstract: The invention features methods for detecting cancers, especially lung cancer and/or esophageal cancer, using over-expressed gene; CDCA5, EPHA7, STK31 or WDHD1 compared the normal organs. Also disclosed are methods of identifying compounds for treating and preventing cancers, based on the over-expression or the biological activity of CDCA5, EPHA7, STK31 or WDHD1 in the cancers, especially the interaction between EPHA7 and EGFR. Also, features are a method for treating cancers by administering a double-stranded molecule against CDCA5, EPHA7, STK31 or WDHD1 gene. The invention also features products, including the double-stranded molecules and vectors encoding them, as well as compositions comprising the molecules or vectors, useful in the provided methods.
Abstract: In preparation of an emulsion by causing a mixture to flow from one syringe through a connector into another syringe, an object is to prevent the air from being entrained into cylinders and prepare the emulsion containing no air bubble, and another object is to easily prepare a homogeneous emulsion. Provided is a syringe pressing apparatus, including: a syringe fixing mechanism for fixing two syringes to a casing, the two syringes being coupled to each other through a connector; a pressing mechanism for alternately pressing syringe plungers of the two syringes; and a plunger-pressure-measuring device for measuring a pressure with which the pressing mechanism presses the syringe plungers.
Type:
Application
Filed:
September 7, 2009
Publication date:
June 30, 2011
Applicants:
ONCOTHERAPY SCIENCE, INC., THE UNIVERSITY OF TOKYO
Inventors:
Yusuke Nakamura, Yuichi Iwai, Kouji Yoshida
Abstract: The present invention relates to the roles played by OIP5 genes in lung and/or esophageal cancer carcinogenesis and features a method for treating and/or preventing lung and/or esophageal cancer by administering a double-stranded molecule against the OIP5 genes or a composition, vector or cell containing such a double-stranded molecule and antibody. The present invention also features methods for detecting and/or diagnosing lung and/or esophageal cancer, or assessing/determining the prognosis of and/or monitoring the efficacy of a cancer therapy in a patient with lung and/or esophageal cancer by detecting OIP5. Also, disclosed are methods of identifying compounds for treating and preventing cancer relating to OIP5.
Abstract: Objective methods for diagnosing a predisposition to developing cancer, particularly bladder cancer, gastric cancer, colorectal cancer, breast cancer, esophageal cancer, lung cancer, lymphoma, pancreatic cancer and testicular cancer, are described herein. In one embodiment, the diagnostic method involves determining an expression level of PRMT1 gene. The present invention further provides methods of screening for therapeutic agents useful in the treatment of PRMT1 associated disease, such as a cancer, e.g. bladder cancer, gastric cancer, colorectal cancer, breast cancer, esophageal cancer, lung cancer, lymphoma, pancreatic cancer and testicular cancer. The present invention further provides methods of inhibiting the cell growth and treating or alleviating symptoms of PRMT1 associated diseases. The present invention also features products, including double-stranded molecules and vectors encoding thereof as well as to compositions comprising them.
Abstract: The present invention features a method for determining the methyltransferase activity of a polypeptide and screening for modulators of methyltransferase activity, more particularly for modulators of the methylation of retinoblastoma by SMYD3. The invention further provides a method or pharmaceutical composition for prevention or treating of colorectal cancer, hepatocellular carcinoma, bladder cancer and/or breast cancer using a modulator so identified. N-terminal truncated forms of SMYD3 (alias ZNFN3A1) have higher methylating activity. Lys 824 is a preferred methylation site on the RB1 protein for SMYD3.
Abstract: The present invention relates to methods for treating or preventing lung cancer by administering a double-stranded molecule against one or more of EBI3, DLX5, NPTX1, CDKN3 or EF-I delta genes or compositions, vectors or cells containing such a double-stranded molecule. The present invention also features methods for diagnosing lung cancer, especially NSCLC or SCLC, using one or more over-expressed genes selected from among EBI3, DLX5, NPTX1, CDKN3 and/or EF-I delta. Also disclosed are methods of identifying compounds for treating and preventing lung cancer, using as an index their effect on the over-expression of one or more of EBI3, DLX5, CDKN3 and/or EF-I delta in the lung cancer, the cell proliferation function of one or more of EBI3, DLX5, NPTX1, CDKN3 and/or EF-I delta or the interaction between CDKN3 and VRS, EF-I beta, EF-I gamma and/or EF-I delta.