Patents Assigned to OPENFIELD
  • Publication number: 20180003027
    Abstract: A production logging tool (1) to analyze at least one property of a multiphase fluid mixture (MF) flowing in a hydrocarbon well (2) has an elongated cylindrical housing (10, 12, 13, 14) shape and comprises a central pressure-resistant rigid housing (10, 12, 13, 14) carrying a centralizer arrangement (11) comprising multiple external centralizer arms (15, 16) circumferentially distributed about said housing (10, 12, 13, 14) and adapted for contact with a production pipe wall (6) of a hydrocarbon well (2) and operable from a retracted configuration into a radially extended configuration, the centralizer arms (15, 16) being coupled at a first side to the housing (10, 12, 13, 14) and at a second side to a first sliding sleeve (21) and a first spring (24).
    Type: Application
    Filed: February 13, 2017
    Publication date: January 4, 2018
    Applicant: OPENFIELD
    Inventors: Eric DONZIER, Linda ABBASSI, Emmanuel TAVERNIER
  • Patent number: 9777555
    Abstract: A system and method for predictive flow assurance assessment by measuring at least one actual parameter related to a multiphase fluid mixture flowing in a main flow line, taking a sample from the multiphase fluid mixture flowing in the main flow line, modifying at least one control parameter of the sample until a transition appears, wherein said transition would cause a flow issue when occurring in the main flow line, detecting the transition of the sample and determining a corresponding transition value associated with the at least one control parameter, calculating a difference between the at least one actual parameter and the at least one transition value, said difference being representative of a margin relatively to a similar transition appearance in the main flow line causing a flow issue in the main flow line, and implementing a flow issue preventing step when the difference exceeds a given threshold.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: October 3, 2017
    Assignee: OPENFIELD
    Inventor: Eric Donzier
  • Publication number: 20170219737
    Abstract: A downhole fluid properties optical analysis probe (1) to analyze at least one property of a multiphase flow mixture (100) flowing in a hydrocarbon well (51) has an elongated cylindrical body shape. It comprises an optical tip (5) at one end of the elongated cylindrical body arranged to be in contact with the multiphase flow mixture (100). It further comprises an optical link (6) adapted for a connection with an electronics module (11) at another end of the elongated cylindrical body arranged to be separated from the multiphase flow mixture (100). The optical tip (5) is coupled to the optical link (6) through a removable and watertight coupling (7).
    Type: Application
    Filed: January 26, 2017
    Publication date: August 3, 2017
    Applicant: OPENFIELD
    Inventors: Eric DONZIER, Linda ABBASSI, Emmanuel TAVERNIER
  • Patent number: 9719904
    Abstract: A density and viscosity sensor for measuring density and viscosity of a fluid, comprises: a housing (4) defining a chamber (8) isolated from the fluid (3), the housing (4) comprising an area defining a membrane (9) separating the chamber (8) from the fluid (3); a resonating element (5) arranged to be immersed in the fluid (3) and mechanically coupled to the membrane (9); and an actuating/detecting element (6) coupled to the resonating element (5), the actuating/detecting element (6) being positioned within the chamber (8) and mechanically coupled to the membrane (9), the actuating/detecting element (6) comprising at least one piezoelectric element (10) comprising two sides (11, 12) substantially parallel to the membrane (9); The membrane (9) has a thickness enabling transfer of mechanical vibration between the actuating/detecting element (6) and the resonating element (5). One side (11) of the piezoelectric element (10) comprises a single conductive area (13).
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: August 1, 2017
    Assignee: OPENFIELD
    Inventor: Eric Donzier
  • Publication number: 20170198574
    Abstract: A downhole fluid properties optical analysis probe (1) to analyze at least one property of a multiphase flow mixture (100) flowing in a hydrocarbon well (51) has an elongated cylindrical body shape and comprises an optical tip (5) at one end of the elongated cylindrical body arranged to be in contact with the multiphase flow mixture (100), and an optoelectronics module (11) at another end of the elongated cylindrical body arranged to be separated from the multiphase flow mixture (100) and coupled to the optical tip (5) by an optical fiber bundle.
    Type: Application
    Filed: March 6, 2016
    Publication date: July 13, 2017
    Applicant: OPENFIELD
    Inventors: Eric DONZIER, Linda ABBASSI, Emmanuel TAVERNIER
  • Patent number: 9651710
    Abstract: A downhole fluid properties analysis device connectable to a downhole sampling flow line having an internal diameter between 2 to 15 mm adapted to let flow the fluid, a hydrocarbon multiphase fluid from a hydrocarbon subsurface reservoir, to be analyzed. The analysis device includes an analysis pipe portion and a first optical probe arranged to transmit a light into the fluid and a second optical probe, connected to a spectrometer and arranged to produce a signal resulting from an interaction of the fluid with said light indicative of the downhole fluid properties. Each optical probe has an elongated body mounted through the wall of the analysis pipe portion and a needle-shaped tip with an external diameter less than 1 mm. The tips of the probes project into a flow section of the analysis pipe portion such that the first tip faces the second tip.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: May 16, 2017
    Assignee: OPENFIELD
    Inventors: Eric Donzier, Linda Abbassi, Emmanuel Tavernier
  • Publication number: 20170016316
    Abstract: A downhole ultrasonic transducer (10) used to transmit and/or receive ultrasonic waves in a hydrocarbon well where a fluid is present comprises: a metal housing (11) defining an internal cavity (12) isolated from the fluid of the hydrocarbon well (100) by a membrane wall (13) made of metal or metal alloy; a piezoelectric element (14) mounted inside the internal cavity (12), the piezoelectric element (14) having a front side (20) mechanically coupled on the membrane wall (13); wherein: the internal cavity (12) is at a pressure unrelated to a hydrocarbon well pressure; a back side (21) of the piezoelectric element (14) is arranged to be free to oscillate in the internal cavity (12) so as to generate a high acoustic impedance mismatch between the piezoelectric element (14) and the internal cavity (12) at the back side (21) and to maximize acoustic transmission at the front side (20); and a thickness (ei) of the membrane wall (13) is such that there is a common resonance between the membrane wall and th
    Type: Application
    Filed: July 12, 2016
    Publication date: January 19, 2017
    Applicant: OPENFIELD
    Inventors: Eric DONZIER, Linda ABBASSI, Emmanuel TAVERNIER
  • Publication number: 20160327683
    Abstract: A downhole fluid properties analysis device (51) is connectable to a downhole sampling flow line (8). The downhole sampling flow line (8) has an internal diameter between 2 to 15 mm adapted to let flow the fluid (3) to be analyzed. The fluid (3) is a hydrocarbon multiphase fluid mixture from a hydrocarbon subsurface reservoir (4).
    Type: Application
    Filed: May 3, 2016
    Publication date: November 10, 2016
    Applicant: OPENFIELD
    Inventors: Eric DONZIER, Linda ABBASSI, Emmanuel TAVERNIER
  • Publication number: 20160186533
    Abstract: A system and method for predictive flow assurance assessment by measuring at least one actual parameter related to a multiphase fluid mixture flowing in a main flow line, taking a sample from the multiphase fluid mixture flowing in the main flow line, modifying at least one control parameter of the sample until a transition appears, wherein said transition would cause a flow issue when occurring in the main flow line, detecting the transition of the sample and determining a corresponding transition value associated with the at least one control parameter, calculating a difference between the at least one actual parameter and the at least one transition value, said difference being representative of a margin relatively to a similar transition appearance in the main flow line causing a flow issue in the main flow line, and implementing a flow issue preventing step when the difference exceeds a given threshold.
    Type: Application
    Filed: June 21, 2013
    Publication date: June 30, 2016
    Applicant: OPENFIELD
    Inventor: Eric DONZIER
  • Publication number: 20150075279
    Abstract: A density and viscosity sensor for measuring density and viscosity of a fluid, comprises: a housing (4) defining a chamber (8) isolated from the fluid (3), the housing (4) comprising an area defining a membrane (9) separating the chamber (8) from the fluid (3); a resonating element (5) arranged to be immersed in the fluid (3) and mechanically coupled to the membrane (9); and an actuating/detecting element (6) coupled to the resonating element (5), the actuating/detecting element (6) being positioned within the chamber (8) and mechanically coupled to the membrane (9), the actuating/detecting element (6) comprising at least one piezoelectric element (10) comprising two sides (11, 12) substantially parallel to the membrane (9); The membrane (9) has a thickness enabling transfer of mechanical vibration between the actuating/detecting element (6) and the resonating element (5). One side (11) of the piezoelectric element (10) comprises a single conductive area (13).
    Type: Application
    Filed: April 12, 2013
    Publication date: March 19, 2015
    Applicants: AVENISENSE, OPENFIELD
    Inventor: Eric Donzier
  • Patent number: 8931347
    Abstract: A fluid pressure measurement sensor (11) comprises a microelectromechanical system (MEMS) chip (23). The MEMS chip (23) comprises two lateral walls (56), a sensitive membrane (49) connected to said lateral walls (56) and sealed cavity (9). The exterior surfaces of the lateral walls (56) and the sensitive membrane (49) are exposed to the fluid pressure. The lateral walls (56) are designed to subject the sensitive membrane (49) to a compression stress transmitted by the opposite lateral walls (56) where said lateral walls (56) are connected to the sensitive membrane (49) such that the sensitive membrane (49) works in compression only. The MEMS chip (23) also comprises a stress detection circuit (31) to measure the compression state of the sensitive membrane (49) which is proportional to the fluid pressure.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: January 13, 2015
    Assignee: Openfield SAS
    Inventors: Eric Donzier, Emmanuel Tavernier
  • Publication number: 20130145853
    Abstract: A fluid pressure measurement sensor (11) comprises a microelectromechanical system (MEMS) chip (23). The MEMS chip (23) comprises two lateral walls (56), a sensitive membrane (49) connected to said lateral walls (56) and sealed cavity (9). The exterior surfaces of the lateral walls (56) and the sensitive membrane (49) are exposed to the fluid pressure. The lateral walls (56) are designed to subject the sensitive membrane (49) to a compression stress transmitted by the opposite lateral walls (56) where said lateral walls (56) are connected to the sensitive membrane (49) such that the sensitive membrane (49) works in compression only. The MEMS chip (23) also comprises a stress detection circuit (31) to measure the compression state of the sensitive membrane (49) which is proportional to the fluid pressure.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 13, 2013
    Applicant: OPENFIELD
    Inventor: OPENFIELD