Patents Assigned to Opra Technologies B.V.
  • Patent number: 9625153
    Abstract: A low calorific value fuel-fired can combustor for a gas turbine include a generally cylindrical housing, and a generally cylindrical liner disposed coaxially within the housing to define with the housing a radial outer flow passage for combustion air, the liner also defining inner primary and intermediate regions of a combustion zone and a dilution zone, the dilution zone being axially distant a closed housing end relative to the combustion zone. A nozzle assembly disposed at the closed housing end includes an air blast nozzle and surrounding swirl vanes. An impingement cooling sleeve coaxially disposed in the combustion air passage between the housing and the liner impingement cools the portion of the liner defining the combustion zone. A portion of the combustor air is introduced directly into the intermediate region.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: April 18, 2017
    Assignee: OPRA TECHNOLOGIES B.V.
    Inventors: Martin Beran, Axel Lars-Uno Eugen Axelsson
  • Patent number: 9423132
    Abstract: The gaseous fuel-fired can combustor for a gas turbine include a generally cylindrical housing, and a generally cylindrical liner disposed coaxially within the housing to define with the housing a radial outer flow passage for combustion air, the-liner also defining inner combustion and a dilution zone, the dilution zone being axially distant a closed housing end relative to the combustion zone. A fuel/air mixing apparatus disposed at the closed housing end includes a plurality of swirl vanes defining passages each having constant cross-section flow areas along the vanes, and an increasing aspect ratio from the passage inlet to the outlet. An impingement cooling sleeve coaxially disposed in the combustion air passage between the housing and the liner cools the portion of the liner defining the combustion zone.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: August 23, 2016
    Assignee: OPRA TECHNOLOGIES B.V.
    Inventors: Axel Lars-Uno Eugen Axelsson, Martin Beran, Ekaterina Sinkevich
  • Patent number: 8844260
    Abstract: A low calorific value fuel-fired can combustor for a gas turbine include a generally cylindrical housing, and a generally cylindrical liner disposed coaxially within the housing to define with the housing a radial outer flow passage for combustion air, the liner also defining inner combustion and a dilution zone, the dilution zone being axially distant a closed housing end relative to the combustion zone. A nozzle assembly disposed at the closed housing end includes an air blast nozzle and surrounding swirl vanes. An impingement cooling sleeve coaxially disposed in the combustion air passage between the housing and the liner impingement cools the portion of the liner defining the combustion zone. The combustion liner has an L/D ratio of in the range 1?L/D?4, and a ratio of the combustion zone volume (m3) to heat energy flow rate Q (MJ/sec) in the range 0.0026?V/Q?0.018.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: September 30, 2014
    Assignee: Opra Technologies B.V.
    Inventors: Martin Beran, Michal Koranek, Axel Lars-Uno Eugen Axelsson
  • Patent number: 8596035
    Abstract: Apparatus for reducing air mass flow through the compressor in a single shaft gas turbine engine having an extended operating range including part load conditions, to provide low emissions combustion. The apparatus includes one or more nozzles positioned for injecting compressed air into the inlet region of the compressor. The nozzles are oriented to direct the compressed air tangentially to, and in the same angular direction as, the direction of rotation to create a swirl in the inlet air flow to the compressor inducer. The apparatus also includes conduits in flow communication between the compressor diffuser and the nozzles, one or more valves operatively connected to control the flow of compressed air from the diffuser to the nozzles, and a controller operatively connected to the valves to cause compressed air flow to the nozzles during operation at part load conditions.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 3, 2013
    Assignee: Opra Technologies B.V.
    Inventor: R. Jan Mowill
  • Patent number: 8105012
    Abstract: An adjustable bleed apparatus and method for bleeding air to or from the impeller inlet region of a centrifugal compressor through a segmented annular bleed slot. An annular support member, connected to the fixed intake casing, supports a downstream annular shroud segment and an upstream annular shroud segment such that the downstream end of the downstream shroud segment is unconstrained. The spaced-apart distance between the shroud segments defines an annular bleed slot, which is segmented by bridge members. The connections between the shroud segments and the annular support member are configured such that the spaced apart distance of the annular bleed slot is adjustable. The connections between the annular support member and the fixed intake casing are configured such that the running clearance between the downstream shroud segment and the impeller is adjustable independently from the width of bleed slot.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 31, 2012
    Assignee: Opra Technologies B.V.
    Inventor: Atte Anema
  • Patent number: 8001792
    Abstract: Apparatus for channeling combustion gases to a turbine in a gas turbine engine. The engine has a compressor for providing compressed air, a combustor for combusting fuel with the compressed air to provide combustion gases, and a radial inflow turbine having an inlet configured to receive the combustion gases. The turbine is rotatable about an axis for expanding the combustion gases to produce work. The apparatus includes a subassembly of plurality of nozzle guide vanes fixed between a pair of spaced apart, ring-shaped sidewalls. A pair of spaced apart supports is configured to position the subassembly therebetween, concentric with the axis, and adjacent the turbine inlet. The apparatus further includes a plurality of bolt assemblies extending axially through the pair of supports, apertures in the sidewalls, and holes in the guide vanes.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: August 23, 2011
    Assignee: OPRA Technologies B.V.
    Inventors: Marek Dvorak, R. Jan Mowill
  • Patent number: 7617684
    Abstract: A can combustor includes a generally cylindrical housing having an interior, an axis, and a closed axial end. The closed axial end includes means for introducing fuel to the housing interior. A generally cylindrical combustor liner is disposed coaxially within the housing and configured to define with the housing respective radially outer passages for combustion air and for dilution air, and also respective radially inner volumes for a combustion zone and a dilution zone. The combustion zone is disposed axially adjacent the closed housing end, and the dilution zone is disposed axially distant the closed housing end. The can combustor also includes an impingement cooling sleeve coaxially disposed between the housing and the combustor liner and extending axially from the closed housing end for a substantial length of the combustion zone.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 17, 2009
    Assignee: Opra Technologies B.V.
    Inventor: Eric Roy Norster