Patents Assigned to Optical Integrity, Inc.
  • Patent number: 11612434
    Abstract: A side-firing laser system with a standoff catheter includes an optical fiber configured to emit therapeutic laser radiation in a direction generally transverse to an axis of the fiber; and a catheter through which the optical fiber is inserted during a surgical procedure. The catheter includes a transparent end section through which the therapeutic laser radiation passes to vaporize tissue outside the catheter, an open distal end to permit exit of irrigation fluid from the catheter, and an opening in a side of the end section, the opening having dimensions that are approximately equal to or less than cross-sectional dimensions of the therapeutic laser radiation. When the fiber is moved to a position at which the therapeutic laser radiation passes through the opening, the laser radiation causes coagulation or vaporization of tissues.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Optical Integrity, Inc
    Inventors: Joe D. Brown, Howard S. Klymas, Daniel Malphurs
  • Patent number: 11607269
    Abstract: A system and method for detecting relative location of a surgical laser fiber tip relative to a surgical laser target during a surgical laser procedure utilizes a spectrophotometer to detect radiation indicative of the relative location. For example, the detected radiation may indicate contact between the fiber tip and a stone being subjected to laser lithotripsy, so as to prompt the surgeon to withdraw the fiber tip from the stone and/or take other action to limit contact-induced erosion of the fiber tip, and to avoid saturation of the endoscope camera resulting from the flash that occurs following contact. In addition, the absence of any detected radiation by the spectrophotometer may be used to indicate that the stone is no longer present, or that the fiber tip is no longer aimed at the stone, prompting the operator to reposition the fiber and/or temporarily cease firing of the laser.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: March 21, 2023
    Assignee: OPTICAL INTEGRITY, INC.
    Inventor: Joe Denton Brown
  • Patent number: 11395700
    Abstract: A protective structure for the distal treatment end of a surgical laser fiber inserted into a patient through a scope includes uniformly-spaced ruler or scale markings that are visible through the scope and that enable the size of an object within the field of view of the scope to be precisely determined.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 26, 2022
    Assignee: OPTICAL INTEGRITY, INC.
    Inventors: Joe D. Brown, Daniel Malphurs, Howard S. Klymas
  • Patent number: 11376071
    Abstract: A method of reducing retro-repulsion of a stone during a laser lithotripsy procedure involves the use of a spacer tip or standoff sleeve to create a passage between the tip of a fiber and a stone, and to prevent collapse of a bubble formed by vaporization of and/or gas pressure on liquid present in the passage. The laser radiation may consist of continuous or quasi-continuous wave radiation that is relatively low in power compared to the therapeutic pulses, or may consist of the therapeutic pulses if the pulse frequency is high enough to prevent collapse of the bubble between pulses. The spacer tip or standoff sleeve further prevents collapse of the bubble and ingress of liquid into the laser path. The spacer tip or standoff sleeve may be a generally-cylindrical protective cap that is fitted to an end of the optical fiber and that extends beyond the fiber tip to provide a predetermined spacing or standoff between the fiber tip and the stone when the protective cap is in contact with the stone.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: July 5, 2022
    Assignee: OPTICAL INTEGRITY, INC.
    Inventors: Joe D. Brown, Daniel Malphurs
  • Patent number: 11278352
    Abstract: A distal end of an optical fiber may be protected by a variety of alternative protective caps, tips, and/or sleeves. In one example, a generally cylindrical soft tip is arranged to fit over the end of the fiber, and to compress in an axial direction when pressed against a stone to allow a recessed tip of the fiber to contact the stone or to be maintain a minimum spacing between the fiber tip and the stone and thereby limit erosion of the fiber tip.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: March 22, 2022
    Assignee: OPTICAL INTEGRITY, INC.
    Inventor: Joe D. Brown
  • Patent number: 11253318
    Abstract: An arrangement that prevents carbonization of cladding, coating, or buffer layers of a surgical laser fiber due to thermal radiation reflected back into the fiber from, or emitted by, a target of the laser, includes a thermal radiation blocking, absorbing or diverting structure. The thermal radiation blocking, absorbing or diverting structure surrounds an end portion of the fiber that has been stripped of one or more coating and/or buffer layers, and may be made of a heat resistant material such as PTFE or polyimide to block heat from reaching the coating or buffer layers, an optical ferrule such as fused silica to guide the heat away from the fiber coating or buffer layers, or a high refraction index material such as UV adhesive.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 22, 2022
    Assignee: OPTICAL INTEGRITY, INC.
    Inventors: Joe Denton Brown, Daniel Malphurs
  • Patent number: 11173669
    Abstract: A first structure made of a first polymer is joined to a second structure made of an incompatible second polymer by the steps of welding small bands of compatible tubing or material to the first structure to create raised structures or ribs, and mechanically linking the second structure with the ribs or raised structures at the desired attachment point. The mechanical linkage may be accomplished by using heat shrinking or mechanical compression (such as crimping) to force the incompatible second polymer around the ribs or raised structures or, in the case of raised structures formed as threads or nubs, by inter-engagement between the threads or nubs on the first structure and corresponding structures, such as internal threading, nub-receiving slots, or internal surfaces, of the second structure.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 16, 2021
    Assignee: OPTICAL INTEGRITY, INC.
    Inventor: Daniel Malphurs
  • Patent number: 11172988
    Abstract: A protective ferrule for an end-firing optical fiber arrangement combines a spherical or rounded shape with a planar end. The combination of the spherical or rounded shape and planar end provides protection for the working channel of an endoscope or catheter through which the fiber is inserted while confining and minimizing erosion of the active surface area of the fiber. The protective ferrule of may be fitted to the end of the optical fiber by the steps of heating the ferrule to expand an inside diameter so that it fits over the end of the fiber, with subsequent cooling of the ferrule causing it to contract and create a compression fit.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: November 16, 2021
    Assignee: OPTICAL INTEGRITY, INC.
    Inventor: Joe Denton Brown
  • Patent number: 11109911
    Abstract: A system and method for detecting relative location of a surgical laser fiber tip relative to a surgical laser target during a surgical laser procedure utilizes a spectrophotometer to detect radiation indicative of the relative location. For example, the detected radiation may indicate contact between the fiber tip and a stone being subjected to laser lithotripsy, so as to prompt the surgeon to withdraw the fiber tip from the stone and/or take other action to limit contact-induced erosion of the fiber tip, and to avoid saturation of the endoscope camera resulting from the flash that occurs following contact. In addition, the absence of any detected radiation by the spectrophotometer may be used to indicate that the stone is no longer present, or that the fiber tip is no longer aimed at the stone, prompting the operator to reposition the fiber and/or temporarily cease firing of the laser.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 7, 2021
    Assignee: OPTICAL INTEGRITY, INC.
    Inventor: Joe Denton Brown
  • Publication number: 20190321104
    Abstract: A method of reducing retro-repulsion of a stone during a laser lithotripsy procedure involves the use of a spacer tip or standoff sleeve to create a passage between the tip of a fiber and a stone, and to prevent collapse of a bubble formed by vaporization of and/or gas pressure on liquid present in the passage. The laser radiation may consist of continuous or quasi-continuous wave radiation that is relatively low in power compared to the therapeutic pulses, or may consist of the therapeutic pulses if the pulse frequency is high enough to prevent collapse of the bubble between pulses. The spacer tip or standoff sleeve further prevents collapse of the bubble and ingress of liquid into the laser path. The spacer tip or standoff sleeve may be a generally-cylindrical protective cap that is fitted to an end of the optical fiber and that extends beyond the fiber tip to provide a predetermined spacing or standoff between the fiber tip and the stone when the protective cap is in contact with the stone.
    Type: Application
    Filed: March 14, 2019
    Publication date: October 24, 2019
    Applicant: Optical Integrity, Inc.
    Inventors: JOE D. BROWN, DANIEL MALPHURS