Patents Assigned to Optical Systems, Inc.
  • Publication number: 20240035990
    Abstract: An x-ray fluorescence system and method of fabrication are provided which include a titanium x-ray source, a focusing, doubly-curved lithium fluoride (LiF) crystal optic, and a detector. The titanium x-ray source includes a titanium target on which electrons impinge to generate a diverging x-ray beam with a titanium-based characteristic energy, and the focusing, doubly-curved LiF crystal optic monochromates and focuses the diverging x-ray beam from the titanium x-ray source to provide a monochromated and focused x-ray excitation beam directed to impinge on a sample. The crystal optic and the titanium x-ray source operate at a Bragg angle which facilitates polarization within the x-ray fluorescence system. The detector receives fluorescence from the sample induced by the x-ray excitation beam impinging thereon, with the fluorescence is indicative of a concentration of at least one element in the sample.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Zewu CHEN, Fuzhong WEI, Joseph J. SPINAZOLA, III, Zhifan GAO, Yaobiao XIA
  • Publication number: 20220201830
    Abstract: An x-ray source assembly includes an anode stack including a source spot upon which electrons impinge with power being supplied to the assembly, and a control system to facilitate maintaining intensity of output x-rays from the x-ray source assembly during operation. The control system is configured to actively control temperature of the anode stack relative to a setpoint or defined setpoint range. The control system heats the anode stack in a heating mode, when an anode stack temperature is below the setpoint or defined setpoint range, and switches to a cooling mode to cool the anode stack when the anode stack temperature rises above the setpoint or defined setpoint range.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Ernest COOLEY, Xin ZHANG, Fuzhong WEI
  • Patent number: 11255794
    Abstract: Disclosed are systems and methods for the robust passive detection of airborne toxins using a colorimetric sensor coating onto a optically transparent substrate. In certain embodiments, the substrate is affixed to an adhesive material (tape). In certain embodiments, the sensor and substrate are transparent. In various embodiments, multiple sensors are coated onto selected substrate for the simultaneous detection of multiple toxins. In various embodiments, the sensed or detected toxins include a number of chemical warfare agents and toxic industrial chemicals. In various implementations, the tape is affixed to a remote surface, which may be visually monitored by a camera directly by focusing the camera on the tape or may be affixed to a camera lens by an adhesive backing, such that colorimetric sensor changes may be observed through the lens itself.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: February 22, 2022
    Assignees: Intelligent Optical Systems, Inc., United States of America as Represented by the Secretary of the Army
    Inventors: Manal Beshay, Janet L. Jensen, James M. Cress
  • Patent number: 11231324
    Abstract: A method of characterizing and monitoring a fermentation process includes acquiring online Raman spectra of a fermentation process within a fermenter vessel at different times during the fermentation process to generate a training data set; acquiring physical samples from fermentation process near in time to the acquired Raman spectra; performing offline measurements of the target analyte properties and/or compositions using an assay measurement technique; generating a correlative model of the target analyte such that spectral changes in the training data set correlate with the offline measurements of the target analyte properties and/or compositions; acquiring online Raman spectra of a subsequent run of the fermentation process within the fermenter vessel at different times during the run to generate a process data set; and applying the correlative model to the process data set to qualitatively and/or quantitatively predict a value of a property and/or composition of the target analyte.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: January 25, 2022
    Assignee: Kaiser Optical Systems Inc.
    Inventor: Sean J. Gilliam
  • Patent number: 11202590
    Abstract: Disclosed is a system which adds biochemical sensitivity to a standard biopsy needle such that the practitioner is provided immediate feedback on the metabolism and physiology of tissue in the local environment. Disclosed is a sensor integrated biopsy device for in situ and real time tissue analysis. The sensor integrated biopsy (SIB) needle system will enable biopsy teams to measure local tissue biochemistry in real time during biopsy procedures, adding a valuable new set of parameters to augment and extend conventional image-guided procedures.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 21, 2021
    Assignee: Intelligent Optical Systems, Inc.
    Inventors: Jesus Delgado Alonso, Robert Lieberman, David Berry
  • Patent number: 11193928
    Abstract: An unmanned vehicle operated autonomously or by remotely piloting incorporates an onboard camera which is affixed with clear tape coated with a chemical colorimetric sensor dye sensitive to chemical warfare agents. Chemical warfare agents are detected by visual review or autonomous measurement of sensor color changes while the unmanned vehicle travels through a region suspected of having chemical warfare agents present. In various implementations, the sensor output color changes may be visually monitored by a vehicle operator viewing the camera image from a remote location. In various embodiments, the detection of chemical warfare agents may be confirmed by processing the coated tape with a calibrated opto-electronic reader.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: December 7, 2021
    Assignee: Intelligent Optical Systems, Inc.
    Inventors: Manal Beshay, Janet L Jensen, James M Cress
  • Patent number: 11137304
    Abstract: A system, probe and method accurately measure the strain or extension of a fastener that occurs as a nut on the fastener is tightened and the fastener is put under load. The measurement technique is based on measurement of the time for an ultrasonic wave generated on one end of the fastener to travel a round trip through the fastener. As the fastener is tightened, the applied stress causes an associated increase in length. This length can be determined from a measurement of the increase in transit time. In various embodiments, the disclosed device and method uses laser ultrasonic testing (LUT), in which a pulsed laser generates the ultrasonic wave and a type of laser vibrometer detects the wave when it returns to the position of generation following a combination of longitudinal and shear wave reflections, which result in a higher magnitude and more easily and precisely measurable reflected signal peak than a signal peak associated with a signal directly reflected against the opposite end of the fastener.
    Type: Grant
    Filed: January 4, 2020
    Date of Patent: October 5, 2021
    Assignee: Intelligent Optical Systems, Inc.
    Inventor: Marvin Klein
  • Patent number: 11035992
    Abstract: The effective coherence length of a single-frequency, solid-state laser is limited to reduce spurious, secondary holograms in conjunction with a holographic recording. The wavelength of the laser is varied or ‘scanned’ with high precision over a very small wavelength range. In an embodiment, the temperature of the laser's resonant cavity optical bench is altered, causing the dimension of the cavity to change and the emission wavelength to move in a controlled manner. The changing wavelength is monitored at high resolution, and a feedback control loop updates the temperature set-point to keep the monitored laser wavelength moving at a desired rate of change through a desired range. As the wavelength of the laser is scanned, the phase of the holographic interference pattern is locked at a position of maximum coherence/contrast within the holographic film aperture.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 15, 2021
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Timothy J. Britton, James M. Tedesco
  • Patent number: 10816373
    Abstract: An improved method of sealing a window into an aperture in a body uses a lubricant comprising polytetrafluoroethylene (PTFE) particles suspended in a volatile, low viscosity, low surface tension carrier fluid. The carrier fluid is applied to one or both of the sidewalls of the window and aperture, and the window is pressed into the aperture such that the carrier fluid evaporates, leaving the PTFE particles to fill interstitial surface voids, while enabling the sidewall of the window to make intimate mechanical contact with the sidewall of the aperture. While having broader application, the present disclosure finds particular utility in optical characterization techniques based upon the Raman effect and fluorescence probes used in process monitoring and control.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: October 27, 2020
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Jeremy David Preister, Joseph B. Slater, Michael G. Stidham
  • Patent number: 10768115
    Abstract: The present disclosure includes discloses a method for analyzing a multi-component gas sample using spectroscopy in combination with the measurement of extrinsic or intrinsic properties of the gas sample. The results of the spectroscopic analysis and the measurement are combined to quantify a gas component unseen by the spectroscopic analysis.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 8, 2020
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Joseph B. Slater, James M. Tedesco, Francis Esmonde-White
  • Patent number: 10753805
    Abstract: A radiation shield for near-infrared detectors of the type used in Raman spectroscopic systems comprises a chamber enclosing the detector and a cooling device in thermal contact with the chamber and the detector to reduce the level of unwanted radiation to which the detector would otherwise be exposed. The chamber may include a window in optical alignment with the detector, and the window may include one or more coatings to pass wavelengths in a range of interest or block radiation at wavelengths outside of this range. The shield may be enclosed in an evacuated dewar having a window which may also include one or more coatings to favor the wavelength range.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 25, 2020
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Joseph B. Slater, James M. Tedesco, Alfred Feitisch
  • Patent number: 10705033
    Abstract: A sample handling apparatus/technique/method for a material analyze including a sample carrier for presenting a pressurized sample (e.g., LPG) to a sample focal area of the analyzer; a removable fixture for charging the pressurized sample into the sample carrier; the removable fixture including at least one port to provide sample to and from the fixture and carrier. The sample handling apparatus may include a retainer, wherein the sample carrier is removeably combined with the fixture using the retainer, the apparatus being insertable into the analyzer for sample analysis; and wherein the retainer includes an aperture for presenting the sample to the focal area from a filmed, lower end of the carrier in proximity therewith.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 7, 2020
    Assignee: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Joseph J Spinazola, III, Jay Burdett, Zewu Chen, Daniel Dunham
  • Patent number: 10670528
    Abstract: A Raman spectroscopic measurement system for measuring the material composition of a mixed phase fluid having a gas phase dispersed in a liquid phase or vice versa is disclosed, which includes an insert to be inserted into a process. The insert includes a measurement chamber partially defined by a phase separating membrane that enables the gas phase to diffuse into and out of the measurement chamber and facilitates coalescing of the liquid phase which into a collector. A first probe of the measurement system is configured to transmit excitation light into the measurement chamber and to receive a Raman signal emanating from the gas phase therein, and a second probe is configured to transmit excitation light into the drain and to receive a Raman signal emanating from the liquid phase therein. The measurement system further includes a spectrometer to determine the material composition of the fluid from the Raman signals.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: June 2, 2020
    Assignee: Kaiser Optical Systems Inc.
    Inventor: Joseph B. Slater
  • Patent number: 10627289
    Abstract: An improved method for integrating curve peaks as compared to techniques such as the trapezoidal rule wherein integration parameters are at fixed x-axis positions. Integration parameters are instead specified relative to a peak center, which allows the peak to shift over time due to hardware changes, temperature fluctuation, pressure changes, etc., while maintaining integration parameters at optimal locations for that peak. As such, the present disclosure finds particular utility in spectroscopy wherein, in the case of Raman spectroscopy, for example, specific wavenumber shift locations may drift over time, leading to inaccurate results based upon absolute integration parameters.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: April 21, 2020
    Assignee: Kaiser Optical Systems Inc.
    Inventor: Patrick Wiegand
  • Patent number: 10557857
    Abstract: Disclosed are embodiments of a lateral flow test strip (LFTS) platform which measure osteocalcin (OC) and deoxypyridinoline (Dpd) in saliva to identify early indications of bone loss and minimize bone fracture risk associated with osteoporosis. The OC assay embodiments are based on the experimentally identified optimal markers which exhibit selectivity with very low false positives, and sensitivity relevant to clinical requirements. A prospective clinical study sampling of 20 patients demonstrated excellent correlation of OC in saliva with bone mineral density (BMD). Salivary OC and Dpd levels were validated with a standard commercial ELISA kit against serum (OC) and urine (Dpd).
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: February 11, 2020
    Assignee: Intelligent Optical Systems, Inc.
    Inventors: Manal Beshay, Morgan Hatch
  • Patent number: 10481385
    Abstract: In one aspect of the present disclosure, improved end optics are disclosed that maximize the numerical aperture focused at a sample point while minimizing unwanted artifacts such as vignetting. The configurations also maintain centering of the excitation/collection beam on the objective if the probe tilts or bends. The disclosed configurations are particularly suited to probes wherein the excitation and/or collection paths between the probe and the laser/analyzer are coupled through multimode fibers, such as in Raman and other forms of laser spectroscopy. The disclosure includes the insertion of one or more additional lenses between the probe head and the focusing objective at the probe tip.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: November 19, 2019
    Assignee: Kaiser Optical Systems Inc.
    Inventor: James M. Tedesco
  • Patent number: 10365229
    Abstract: Pharmaceutical tablet properties, including surface roughness, gloss and temperature, are determined in real-time using Raman spectroscopy. A plurality of coated pharmaceutical tablets are provided having a distribution of known values of a surface property to be modeled. The Raman spectrum of each coated tablet is acquired to generate a distribution of Raman spectra. A correlative model is then developed based upon the distribution of the acquired Raman spectra relative to the distribution of the known values of the measured property. The Raman spectrum of a pharmaceutical tablet is then acquired during and/or after a coating process, and the value of the surface property of the tablet is determined using the correlative model. The steps associated with model development are carried out off-line, whereas the step or steps associated with acquiring the Raman spectra of the pharmaceutical tablet during (preferable) or after online coating process(es) are carried out on-line using a remote, fiber-coupled probe.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: July 30, 2019
    Assignee: Kaiser Optical Systems, Inc.
    Inventor: Sean J. Gilliam
  • Patent number: 10317350
    Abstract: A sample handling apparatus/technique/method for a material analyzer, which provides active, variable concentration of a sample, using a measurement marker introduced into the sample, to measurably concentrate an analyte in a liquid (e.g., water) sample. Active, variable concentration allows otherwise lower level analytes to be concentrated in a measurable way. This enables measurements at higher (e.g., concentrated) levels, which can be extrapolated to obtain their lower, original levels based on the concentration level—measured using the introduced marker as a guide. The sample handling apparatus may be used in combination with an optic-enabled x-ray analyzer, the x-ray analyzer including an x-ray engine with an x-ray excitation path and an x-ray detection path, usable during both during the concentration and analyte measurement.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: June 11, 2019
    Assignee: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Zewu Chen, George Allen, Andrew Hider, Danhong Li, Jon Dunphy, Joseph Spinazola
  • Patent number: 10261020
    Abstract: Systems and methods are used to couple an optical sampling probe to a port in a single-use bioreactor bag for in-process monitoring. A combination of re-useable and disposable components maintain precision while reducing costs. A disposable barb with an integral window, received by the port of the reaction vessel, is coupled to a re-useable optic component with a focusing lens. A separate focus alignment tool is used to set the lens position to a precise focal point before placement of the optic component into the barb. The fixture includes a window to simulate the window in a barb component, a target with a known spectral signature, and a probe head coupled to a spectral analyzer. The axial position of the lens is adjusted with respect to the spacer component to maximize the spectral signature from a sample target, whereupon the spacer component is bonded to the lens mount.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: April 16, 2019
    Assignee: Kaiser Optical Systems Inc.
    Inventors: James M. Tedesco, Joseph B. Slater
  • Patent number: 10260942
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 16, 2019
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White