Patents Assigned to OPTICS11
  • Patent number: 11169025
    Abstract: The present invention provides a method for measuring an optical sensor system comprising an array of intrinsic fiber optic sensors at an interrogator comprising an optical source and an optical detector. The method comprises the steps of emitting an optical signal to an array of intrinsic fiber optic sensors; detecting optical responses to the emitted signal from the sensors; associating each detected optical response with an individual sensor by determining within which region among a plurality of detection regions assigned to the individual sensors the optical response is detected wherein each detection region corresponds to a wavelength range in the bandwidth of the optical sensor system; and performing signal processing on each optical response to measure the value of the physical parameter detected by its associated sensor. A calibration of the detection region assigned to each sensor is performed at predetermined intervals.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 9, 2021
    Assignee: OPTICS11 FAZ LIMITED
    Inventors: John O'Dowd, Devrez Mehmet Karabacak, Roger Maher, Vivian Bessler, Lymperis Voudouris
  • Publication number: 20210231431
    Abstract: A device and method for holding a strain sensor for determining strain in an object includes a body. The body of the device includes a surface mountable frame, the frame being plate-shaped and including: at least two anchor portions for enabling attachment to a surface of the object, a strain sensitive region in an intermediate position between a first anchor portion and a second anchor portion of the at least two anchor portions, a sensor connection portion configured to hold at least one strain sensor for enabling attachment of the strain sensor to the frame in the strain sensitive region, and at least one elastic portion arranged in the strain sensitive region, the elastic portion being formed by a spring structure configured to modify a strain transmission from the object to the sensor connection portion of the frame. Preferably, the device holds a fiber optic strain sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: July 29, 2021
    Applicant: OPTICS11 B.V.
    Inventors: Bastiaan MEULBLOK, Johannes Maria SINGER, Eric MEIJER, Devrez Mahmet KARABACAK
  • Patent number: 10782199
    Abstract: The present document relates to a pressure sensor comprising a structural element, the structural element comprising a first and second structural part. The sensor further comprises a first cavity being in fluid connection with an exterior of the sensor for establishing a first pressure which is dependent on an external pressure in the first cavity and a second cavity configured to be at a second pressure in use. A deformable structure is deformable dependent on a pressure difference between the first pressure and the second pressure. The sensor comprises a fiber including an intrinsic fiber optic sensor fixed to the structural element and to the deformable structure for providing an optical sensor signal dependent on said pressure difference.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: September 22, 2020
    Assignee: OPTICS11 B.V.
    Inventors: Devrez Mehmet Karabacak, Bastiaan Meulblok, German Enrique Knoppers
  • Patent number: 10774492
    Abstract: The embankment monitoring system comprises an optic sensor chain (10) and an interrogator (20). The optic sensor chain (10) comprises a series of intrinsic fiber optic sensors (12) that are mutually spaced with respect to each other in a longitudinal direction of the optic sensor chain and at least one optic fiber (14) to optically connect the plurality of intrinsic fiber optic sensors to the interrogator. The interrogator is configured to issue an optic interrogation signal and the intrinsic fiber optic sensors are configured to respond to the optic interrogation signal with an optic measurement signal that is indicative for at least one physical parameter (P1) sensed by the intrinsic fiber optic sensors. The interrogator is further configured to process the optic measurement signals of the intrinsic fiber optic sensors to estimate a depth (d) as a function of a position (p) along said optic sensor chain (10).
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: September 15, 2020
    Assignee: OPTICS11 B.V.
    Inventors: Devrez Mehmet Karabacak, Bastiaan Meulblok, German Enrique Knoppers
  • Patent number: 10520338
    Abstract: An optical fiber-based sensor system includes a sensing optical fiber having fiber gratings that reflect light at respective wavelengths. A first fiber grating reflects light at a first wavelength. A second fiber grating reflects light at a second wavelength. The system also has a reference optical fiber. An optical read-out arrangement generates light at the first and second wavelengths. The light is injected in the sensing optical fiber and in the reference optical fiber. A first phase difference is measured between light at the first wavelength emanating from the sensing optical fiber and the reference optical fiber. In addition, a second phase difference is measured between light at the second wavelength emanating from the sensing optical fiber the reference optical fiber. A measurement result is based on a difference between the first phase difference and the second phase difference.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: December 31, 2019
    Assignee: OPTICS11
    Inventors: Grzegorz Gruca, Niek Rijnveld
  • Patent number: 10488255
    Abstract: An optical sensor system includes an optical sensor arrangement that includes a Fabry-Perot structure having two reflective surfaces spaced apart at a distance from each other. A spectral acquisition arrangement acquires successive spectral responses from the optical sensor arrangement during successive time intervals. A spectral analysis arrangement detects a periodicity in at least one of the successive spectral responses that have been acquired. The spectral analysis arrangement further detects a phase evolution of the periodicity throughout the successive spectral responses. The phase evolution of the periodicity provides a relatively precise measurement of a variation in an optical path length between the two reflective surfaces of the Fabry-Perot structure. A variation in a physical quantity can cause the variation in the optical path length. Accordingly, a relatively precise measurement of the physical quantity can be achieved.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: November 26, 2019
    Assignee: OPTICS11
    Inventors: Grzegorz Gruca, Niek Rijnveld