Patents Assigned to Optimedica Corporation
  • Patent number: 10561530
    Abstract: Apparatus to treat an eye comprises an annular retention structure to couple to an anterior surface of the eye. The retention structure is coupled to a suction line to couple the retention structure to the eye with suction. A coupling sensor is coupled to the retention structure or the suction line to determine coupling of the retention structure to the eye. A fluid collecting container can be coupled to the retention structure to receive and collect liquid or viscous material from the retention structure. A fluid stop comprising a porous structure can be coupled to an outlet of the fluid collecting container to inhibit passage of the liquid or viscous material when the container has received an amount of the liquid or viscous material. The coupling sensor can be coupled upstream of the porous structure to provide a rapid measurement of the coupling of the retention structure to the eye.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 18, 2020
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Christine Beltran, Jonathan H. Talamo
  • Patent number: 10376356
    Abstract: An optical beam scanning system for incising target tissue in a patient's eye includes a laser source configured to deliver a laser beam to produce optical breakdown and initiate a plasma-mediated process; an OCT imaging device used to create an image of eye tissue that includes the cornea; a delivery system for delivering the laser beam to the target tissue to form a cataract incision; a scanner operable to scan the focal spot of the laser beam to different locations within the patient's eye; and a controller operatively coupled to the laser source, the imaging device, and the scanner. The OCT device is configured to scan the eye tissue to generate imaging data used to define an incision pattern configured to incise one or more relaxation incisions into the cornea, so that the one or more relaxation incisions are formed starting from the inside and proceeding outward.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: August 13, 2019
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, David Angeley, George Marcellino, Dan E. Andersen
  • Patent number: 10219945
    Abstract: A fiducial is generated on an internal anatomical structure of the eye of a patient with a surgical laser. A tonic artificial intraocular lens (IOL) is positioned so that a marker of the tonic IOL is in a predetermined positional relationship relative to the fiducial. This positioning aligns the tonic IOL with the astigmatic or other axis of the eye. The toric IOL is then implanted in the eye of the patient with high accuracy.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 5, 2019
    Assignee: Optimedica Corporation
    Inventors: David D. Scott, David Dewey, Javier Gonzalez
  • Patent number: 10195017
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: February 5, 2019
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 10143590
    Abstract: Method and apparatus for performing a laser-assisted posterior capsulotomy and for performing laser eye surgery on an eye having a penetrated cornea are provided. A method for performing a posterior capsulotomy includes injecting fluid between the lens posterior capsule and the anterior hyaloids membrane to separate the lens posterior capsule and the anterior hyaloids membrane. With the lens posterior capsule separated from the anterior hyaloids membrane, a posterior capsulotomy is performed on the lens posterior capsule by using a laser to incise the lens posterior capsule.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: December 4, 2018
    Assignee: Optimedica Corporation
    Inventors: H. Burkhard Dick, David Scott
  • Patent number: 10130510
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: November 20, 2018
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 10105261
    Abstract: A laser system calibration method and system are provided. In some methods, a calibration plate may be used to calibrate a video camera of the laser system. The video camera pixel locations may be mapped to the physical space. A xy-scan device of the laser system may be calibrated by defining control parameters for actuating components of the xy-scan device to scan a beam to a series of locations. Optionally, the beam may be scanned to a series of locations on a fluorescent plate. The video camera may be used to capture reflected light from the fluorescent plate. The xy-scan device may then be calibrated by mapping the xy-scan device control parameters to physical locations. A desired z-depth focus may be determined by defining control parameters for focusing a beam to different depths. The video camera or a confocal detector may be used to detect the scanned depths.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 23, 2018
    Assignee: Optimedica Corporation
    Inventors: Michael Simoneau, John Scot Hart, Georg Schuele
  • Patent number: 10080684
    Abstract: A first image of the eye is generated when the cornea of the eye is exposed to a gas. The cornea is covered with an optic of a patient interface. A second image of the eye with the patient interface over the cornea is generated. In this second image, the patient interface distorts the second image of the eye. One or more of a position or an orientation of the eye is determined in response to the first image and the second image when the patient interface has been placed over the cornea.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: September 25, 2018
    Assignee: Optimedica Corporation
    Inventor: David D Scott
  • Patent number: 10004639
    Abstract: Configurations are described for conducting ophthalmic procedures to address cataract-related clinical challenges. In one embodiment, a one-piece patient contact interface may be utilized to couple a diagnostic and/or interventional system to a cornea of a patient; in another embodiment, a two-part configuration may be utilized; in another embodiment, a liquid interface two-part embodiment may be utilized.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: June 26, 2018
    Assignee: OptiMedica Corporation
    Inventors: Phillip H. Gooding, David Angeley
  • Patent number: 9996938
    Abstract: A method of blink detection in a laser eye surgical system includes providing a topography measurement structure having a geometric marker. The method includes bringing the topography measurement structure into a position proximal to an eye such that light traveling from the geometric marker is capable of reflecting off a refractive structure of the eye of the patient, and also detecting the light reflected from the structure of the eye for a predetermined time period while the topography measurement structure is at the proximal position. The method further includes converting the light reflected from the surface of the eye into image data and analyzing the image data to determine whether light reflected from the geometric marker is present is in the reflected light, wherein if the geometric marker is determined not to be present, the patient is identified as having blinked during the predetermined time.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: June 12, 2018
    Assignee: Optimedica Corporation
    Inventor: Javier G. Gonzalez
  • Patent number: 9987166
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 5, 2018
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan Talamo
  • Patent number: 9987165
    Abstract: Apparatus to treat an eye comprises an annular retention structure to couple to an anterior surface of the eye. The retention structure is coupled to a suction line to couple the retention structure to the eye with suction. A coupling sensor is coupled to the retention structure or the suction line to determine coupling of the retention structure to the eye. A fluid collecting container can be coupled to the retention structure to receive and collect liquid or viscous material from the retention structure. A fluid stop comprising a porous structure can be coupled to an outlet of the fluid collecting container to inhibit passage of the liquid or viscous material when the container has received an amount of the liquid or viscous material. The coupling sensor can be coupled upstream of the porous structure to provide a rapid measurement of the coupling of the retention structure to the eye.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: June 5, 2018
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Christine Beltran, Jonathan H. Talamo
  • Patent number: 9968439
    Abstract: A system for treating a cataractous lens of a patient's eye includes a laser source for generating a light beam, a scanning system for deflecting the light beam to form a treatment pattern of the light beam, and a controller operably coupled to the laser source and scanning system and configured to operate the scanner to form the treatment pattern. The treatment pattern is a plurality of cuts in the form two or more different incision patterns for segmenting the lens tissue into a plurality of patterned pieces. The incision pattern includes: a first incision pattern including two or more crossing cut incision planes; and a second incision pattern comprising one or more laser incision each extending along a first length between a posterior and an anterior surface of the lens capsule.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 15, 2018
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Barry Seibel, Neil Friedman, Georg Schuele, Phillip Gooding
  • Patent number: 9968486
    Abstract: One embodiment is directed to a patient interface system for ophthalmic intervention on an eye of a patient, comprising: a housing; an optical lens coupled to the housing and having a focal axis; a eye surface engagement assembly coupled to the housing and comprising an inner seal having an inner seal diameter and being configured to circumferentially engage the eye, an outer seal having an outer seal diameter and being configured to circumferentially engage the eye, and a tissue migration bolster structure configured to be positioned circumferentially between the inner and outer circumferential seals and to prevent migration of tissue of the eye toward the eye surface engagement assembly when a vacuum load is applied within the assembly to cause vacuum engagement of the inner and outer seals against the eye.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: May 15, 2018
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Christine Beltran, Michael Wiltberger
  • Patent number: 9918873
    Abstract: A laser system is calibrated with a tomography system capable of measuring locations of structure within an optically transmissive material such as a tissue of an eye. Alternatively or in combination, the tomography system can be used to track the location of the eye and adjust the treatment in response to one or more of the location or an orientation of the eye. In many embodiments, in situ calibration and tracking of an optically transmissive tissue structure such as an eye can be provided. The optically transmissive material may comprise one or more optically transmissive structures of the eye, or a non-ocular optically transmissive material such as a calibration gel in a container or an optically transmissive material of a machined part.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: March 20, 2018
    Assignee: OptiMedica Corporation
    Inventors: Bruce Woodley, Javier Gonzalez
  • Patent number: 9895263
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 20, 2018
    Assignee: Optimedica Corporation
    Inventors: Phillip Gooding, Michael W. Wiltberger, Christine Beltran, Jonathan H. Talamo
  • Patent number: 9849033
    Abstract: A method for laser eye surgery that accommodates patient movement includes: generating a first and a second electromagnetic radiation beam, the second beam configured to modify eye tissue; propagating the first beam to a scanner along a an optical path length that changes in response to eye movement; focusing the first beam to a first focal point within the eye; scanning the first focal point at different locations within the eye; propagating a portion of the first beam reflected from the first focal point location back along the variable optical path to a sensor; generating an intensity signal indicative of the intensity of the portion of the reflected first beam; propagating the second beam to the scanner along the variable optical path; focusing the second beam to a second focal point and scanning the second focal point to create an incision in the cornea of the eye.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: December 26, 2017
    Assignee: Optimedica Corporation
    Inventors: Georg Schuele, Phillip Gooding
  • Patent number: 9849032
    Abstract: An imaging system includes an eye interface device, a scanning assembly, a beam source, a free-floating mechanism, and a detection assembly. The eye interface device interfaces with an eye. The scanning assembly supports the eye interface device and scans a focal point of an electromagnetic radiation beam within the eye. The beam source generates the electromagnetic radiation beam. The free-floating mechanism supports the scanning assembly and accommodates movement of the eye and provides a variable optical path for the electronic radiation beam and a portion of the electronic radiation beam reflected from the focal point location. The variable optical path is disposed between the beam source and the scanner and has an optical path length that varies to accommodate movement of the eye. The detection assembly generates a signal indicative of intensity of a portion of the electromagnetic radiation beam reflected from the focal point location.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 26, 2017
    Assignee: Optimedica Corporation
    Inventors: Georg Schuele, Phillip Gooding, I
  • Patent number: 9820848
    Abstract: A system and method for insetting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: November 21, 2017
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: D826410
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: August 21, 2018
    Assignee: Optimedica Corporation
    Inventors: Steven S. Christensen, Antonio D. Lucero, Brian Riley, Eric B. Lafay, David D. Scott, Michelle SanPedro, Raymond B. Cota, Qi Wu, Adam K. Hoopai, Jeffrey A. Golda