Patents Assigned to OPTIMVIA, LLC
  • Patent number: 11773382
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: October 3, 2023
    Assignee: OPTIMVIA, LLC
    Inventors: Tarsis Gesteira Ferreira, Daniel H. Lajiness
  • Patent number: 11767518
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: September 26, 2023
    Assignee: OPTIMVIA, LLC
    Inventors: Tarsis Gesteira Ferreira, Daniel H. Lajiness
  • Patent number: 11708593
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: July 25, 2023
    Assignee: OPTIMVIA, LLC
    Inventors: Daniel H. Lajiness, Tarsis Gesteira Ferreira
  • Patent number: 11708567
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: July 25, 2023
    Assignee: OPTIMVIA, LLC
    Inventors: Tarsis Gesteira Ferreira, Daniel H. Lajiness
  • Patent number: 11692180
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: July 4, 2023
    Assignee: OPTIMVIA, LLC
    Inventor: Tarsis Gesteira Ferreira
  • Patent number: 11629364
    Abstract: The present invention includes methods for preparing anticoagulant polysaccharides using several non-naturally occurring, engineered sulfotransferase enzymes that are designed to react with aryl sulfate compounds instead of the natural substrate, PAPS, to facilitate sulfo group transfer to polysaccharide sulfo group acceptors. Suitable aryl sulfate compounds include, but are not limited to, p-nitrophenyl sulfate or 4-nitrocatechol sulfate. Anticoagulant polysaccharides produced by methods of the present invention comprise N-, 3-O-, 6-O-sulfated glucosamine residues and 2-O sulfated hexuronic acid residues, have comparable anticoagulant activity compared to commercially-available anticoagulant polysaccharides, and can be utilized to form truncated anticoagulant polysaccharides having a reduced molecular weight.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: April 18, 2023
    Assignee: OPTIMVIA, LLC
    Inventors: Tarsis Ferriera Gesteira, Daniel H. Lajiness
  • Patent number: 11572550
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 7, 2023
    Assignee: OPTIMVIA, LLC
    Inventor: Tarsis Gesteira Ferreira
  • Patent number: 11572549
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 7, 2023
    Assignee: OPTIMVIA, LLC
    Inventor: Tarsis Gesteira Ferreira
  • Patent number: 11542534
    Abstract: The present invention includes methods for preparing anticoagulant polysaccharides using several non-naturally occurring, engineered sulfotransferase enzymes that are designed to react with aryl sulfate compounds instead of the natural substrate, PAPS, to facilitate sulfo group transfer to polysaccharide sulfo group acceptors. Suitable aryl sulfate compounds include, but are not limited to, p-nitrophenyl sulfate or 4-nitrocatechol sulfate. Anticoagulant polysaccharides produced by methods of the present invention comprise N-, 3-O-, 6-O-sulfated glucosamine residues and 2-O sulfated hexuronic acid residues, have comparable anticoagulant activity compared to commercially-available anticoagulant polysaccharides, and can be utilized to form truncated anticoagulant polysaccharides having a reduced molecular weight.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 3, 2023
    Assignee: OPTIMVIA, LLC
    Inventors: Tarsis Ferreira Gesteira, Daniel H. Lajiness
  • Patent number: 11473068
    Abstract: The present invention provides several non-naturally occurring sulfotransferase enzymes that have been engineered to react with aryl sulfate compounds as sulfo group donors, instead of the natural substrate 3?-phosphoadenosine 5?-phosphosulfate (PAPS), and with heparosan-based polysaccharides, particularly heparan sulfate, as sulfo group acceptors. Each of the engineered sulfotransferase enzymes have a biological activity characterized by the position within the heparosan-based polysaccharide that receives the sulfo group, including glucosaminyl N-sulfotransferase activity, hexuronyl 2-O sulfotransferase activity, glucosaminyl 6-O sulfotransferase activity, or glucosaminyl 3-O sulfotransferase activity. Methods of using the engineered sulfotransferases to produce sulfated heparosan-based polysaccharides, including polysaccharides having anticoagulant activity, are also provided.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: October 18, 2022
    Assignee: OPTIMVIA, LLC
    Inventor: Tarsis Gesteira Ferreira