Patents Assigned to Optomec, Inc.
  • Publication number: 20110129615
    Abstract: Apparatuses and processes for maskless deposition of electronic and biological materials. The process is capable of direct deposition of features with linewidths varying from the micron range up to a fraction of a millimeter, and may be used to deposit features on substrates with damage thresholds near 100° C. Deposition and subsequent processing may be carried out under ambient conditions, eliminating the need for a vacuum atmosphere. The process may also be performed in an inert gas environment. Deposition of and subsequent laser post processing produces linewidths as low as 1 micron, with sub-micron edge definition. The apparatus nozzle has a large working distance—the orifice to substrate distance may be several millimeters—and direct write onto non-planar surfaces is possible.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 2, 2011
    Applicant: OPTOMEC, INC. FKA OPTOMEC DESIGN COMPANY
    Inventors: Michael J. Renn, Bruce H. King, Marcelino Essien, Gregory J. Marquez, Manampathy G. Giridharan, Jyh-Cherng Sheu
  • Patent number: 7879394
    Abstract: Method and apparatus for depositing material in hard to reach locations of a workpiece. An elongated member is inserted in an opening. The member transports a laser beam from a fiber laser and material, preferably in powder form, to the desired location. The material is deposited on the workpiece and the laser beam contacts the material. The method and apparatus may be used to manufacture a part or to repair an existing part.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: February 1, 2011
    Assignee: Optomec, Inc.
    Inventors: David M. Keicher, Lucas B. Brewer, Richard John Grylls
  • Publication number: 20100255209
    Abstract: Method and apparatus for direct writing of passive structures having a tolerance of 5% or less in one or more physical, electrical, chemical, or optical properties. The present apparatus is capable of extended deposition times. The apparatus may be configured for unassisted operation and uses sensors and feedback loops to detect physical characteristics of the system to identify and maintain optimum process parameters.
    Type: Application
    Filed: March 9, 2010
    Publication date: October 7, 2010
    Applicant: OPTOMEC, INC.
    Inventors: Michael J. Renn, Bruce H. King, Jason A. Paulsen
  • Publication number: 20100192847
    Abstract: A miniaturized aerosol jet, or an array of miniaturized aerosol jets for direct printing of various aerosolized materials. In the most commonly used embodiment, an aerosol stream is focused and deposited onto a planar or non-planar target, forming a pattern that is thermally or photochemically processed to achieve physical, optical, and/or electrical properties near that of the corresponding bulk material. The apparatus uses an aerosol jet deposition head to form an annularly propagating jet composed of an outer sheath flow and an inner aerosol-laden carrier flow. Miniaturization of the deposition head facilitates the fabrication and operation of arrayed deposition heads, enabling construction and operation of arrays of aerosol jets capable of independent motion and deposition. Arrayed aerosol jets provide an increased deposition rate, arrayed deposition, and multi-material deposition.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicant: OPTOMEC, INC.
    Inventors: Michael J. Renn, Bruce H. King, Jason A. Paulsen
  • Publication number: 20100173088
    Abstract: A miniaturized aerosol jet, or an array of miniaturized aerosol jets for direct printing of various aerosolized materials. In the most commonly used embodiment, an aerosol stream is focused and deposited onto a planar or non-planar target, forming a pattern that is thermally or photochemically processed to achieve physical, optical, and/or electrical properties near that of the corresponding bulk material. The apparatus uses an aerosol jet deposition head to form an annularly propagating jet composed of an outer sheath flow and an inner aerosol-laden carrier flow. Miniaturization of the deposition head facilitates the fabrication and operation of arrayed deposition heads, enabling construction and operation of arrays of aerosol jets capable of independent motion and deposition. Arrayed aerosol jets provide an increased deposition rate, arrayed deposition, and multi-material deposition.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 8, 2010
    Applicant: OPTOMEC, INC.
    Inventor: Bruce H. King
  • Publication number: 20090252874
    Abstract: Apparatus and method for depositing aerosolized material, wherein an aerosol flow is surrounded and focused by more than one consecutive sheath gas flows. The combined sheath and aerosol flows may consecutively flow through more than one capillary, thereby narrowing the flow further. Linewidths of less than one micron may be achieved.
    Type: Application
    Filed: October 8, 2008
    Publication date: October 8, 2009
    Applicant: OPTOMEC, INC.
    Inventors: Marcelino Essien, Bruce H. King
  • Publication number: 20090114151
    Abstract: Apparatuses and processes for maskless deposition of electronic and biological materials. The process is capable of direct deposition of features with linewidths varying from the micron range up to a fraction of a millimeter, and may be used to deposit features on substrates with damage thresholds near 100° C. Deposition and subsequent processing may be carried out under ambient conditions, eliminating the need for a vacuum atmosphere. The process may also be performed in an inert gas environment. Deposition of and subsequent laser post processing produces linewidths as low as 1 micron, with sub-micron edge definition. The apparatus nozzle has a large working distance—the orifice to substrate distance may be several millimeters—and direct write onto non-planar surfaces is possible.
    Type: Application
    Filed: January 6, 2009
    Publication date: May 7, 2009
    Applicant: OPTOMEC, INC. FKA OPTOMEC DESIGN COMPANY
    Inventors: Michael J. Renn, Bruce H. King, Marcelino Essien, Gregory J. Marquez, Manampathy G. Giridharan, Jyh-Cherng Sheu
  • Publication number: 20090090298
    Abstract: A substantially planar assembly for depositing material. The assembly comprises plates which, when assembled, define at least one aerosol channel, a sheath gas plenum, and a nozzle. These components are preferably anisotropic, and preferably rectangular. The aerosol channel may be divided further to improve uniformity of aerosol flow.
    Type: Application
    Filed: September 2, 2008
    Publication date: April 9, 2009
    Applicant: OPTOMEC, INC.
    Inventors: Bruce H. King, Steven Barry Woolfson, David H. Ramahi
  • Publication number: 20090061089
    Abstract: A deposition apparatus comprising one or more atomizers structurally integrated with a deposition head. The entire head may be replaceable, and prefilled with material. The deposition head may comprise multiple nozzles. Also an apparatus for three dimensional materials deposition comprising a tiltable deposition head attached to a non-tiltable atomizer. Also methods and apparatuses for depositing different materials either simultaneously or sequentially.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 5, 2009
    Applicant: OPTOMEC, INC.
    Inventors: Bruce H. King, Gregory J. Marquez, Michael J. Renn
  • Publication number: 20090061077
    Abstract: Method and apparatus for depositing multiple lines on an object, specifically contact and busbar metallization lines on a solar cell. The contact lines are preferably less than 100 microns wide, and all contact lines are preferably deposited in a single pass of the deposition head. There can be multiple rows of nozzles on the deposition head. Multiple materials can be deposited, on top of one another, forming layered structures on the object. Each layer can be less than five microns thick. Alignment of such layers is preferably accomplished without having to deposit oversized alignment features. Multiple atomizers can be used to deposit the multiple materials. The busbar apparatus preferably has multiple nozzles, each of which is sufficiently wide to deposit a busbar in a single pass.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 5, 2009
    Applicant: Optomec, Inc.
    Inventors: Bruce H. King, David H. Ramahi
  • Publication number: 20080013299
    Abstract: A miniaturized aerosol jet, or an array of miniaturized aerosol jets for direct printing of various aerosolized materials. In the most commonly used embodiment, an aerosol stream is focused and deposited onto a planar or non-planar target, forming a pattern that is thermally or photochemically processed to achieve physical, optical, and/or electrical properties near that of the corresponding bulk material. The apparatus uses an aerosol jet deposition head to form an annularly propagating jet composed of an outer sheath flow and an inner aerosol-laden carrier flow. Miniaturization of the deposition head facilitates the fabrication and operation of arrayed deposition heads, enabling construction and operation of arrays of aerosol jets capable of independent motion and deposition. Arrayed aerosol jets provide an increased deposition rate, arrayed deposition, and multi-material deposition. Applications for the miniaturized aerosol jet or jet array include direct patterning for EMI shielding and interconnects.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 17, 2008
    Applicant: OPTOMEC, INC.
    Inventor: Michael Renn