Patents Assigned to OraMetrix, Inc.
  • Patent number: 8021147
    Abstract: A method and system for orthodontic treatment planning, evaluation and quality measurement is provided comprising a workstation having computing platform, a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient. The digitized records include image and other types of data. The computer storage medium further includes a set of software instructions providing graphical user interface tools for providing a user with access to the digitized records for planning orthodontic treatment of a patient. Also provided are reference databases for aiding in the decision process during treatment selection, treatment planning and treatment delivery and progress monitoring and evaluation. Also provided are parameter or criteria measurement techniques and generally acceptable thresholds, which can be updated through learning process and through acquisition of patient data.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 20, 2011
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Markus Kaufmann, Rohit Sachdeva, Claudia Strauss, Doke Evan Roberts
  • Patent number: 7837467
    Abstract: A robotic bending apparatus for bending archwires and other types of elongate, bendable medical devices into a desired configuration includes a first gripping tool and a moveable gripping tool. The first gripping tool can be either fixed with respect to a base or table for the robot or positioned at the end of robot am. The moveable gripping tool is mounted to the end of a moveable robot arm having a proximal portion also mounted to the base. The robot preferably comprises a six axis bending robot, in which the distal end of the moveable arm can move relative to the fixed gripping tool about three translational axes and three rotational axes. The robot bending system is able to form archwires with any required second and third order bends quickly and with high precision.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: November 23, 2010
    Assignee: Orametrix, Inc.
    Inventors: Werner Butscher, Friedrich Riemeier, Rüdger Rubbert, Thomas Weise, Rohit Sachdeva
  • Patent number: 7751871
    Abstract: Disclosed is an optical imaging method and device enabling display and 3D measurement of tridimensional objects (1), whereby at least two individual images are captured one after the other and the image conversion is controlled or regulated differently for these individual images. By employing adustable optical means (10-14) for the illumination of the object or in the optical path for the imaging of the object on the image converter (15) it is possible to acquire a larger amount of visual information on the object observed than that which is available in an individual image due to the limitations imposed by the design of the converter used (15). The invention relates to processes and design forms of the device enabling recording units to be designed, using simply and generally commercial components, which are able to display and measure larger objects (1) despite a reduced field of vision imposed by the design.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: July 6, 2010
    Assignee: Orametrix, Inc.
    Inventor: Rudger Rubbert
  • Patent number: 7744369
    Abstract: A method and system are disclosed for quickly arriving at a pre-set-up for the orthodontic treatment of a patient based up on the user specified parameters; and thereafter enabling the user in interactively arriving at a final, desired treatment set-up for the patient. Several sub-operations are disclosed for arriving at the orthodontic pre-set-up. These sub-operations can be arranged in a specific sequence for realizing the orthodontic treatment pre-set-up for a patient. According to another aspect of the invention, a global reference system is disclosed that enables consistent treatment planning. The global reference system prevents unintended tooth displacements caused as side effects to the desired tooth displacements.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Peer Sporbert, Claudia Strauss
  • Patent number: 7740476
    Abstract: A method is described for taking a three-dimensional virtual model of the dentition and associated anatomical structures of a patient and isolating individual teeth from the rest of the anatomical structure, e.g. gums, to thereby produce individual, virtual three-dimensional tooth objects. The individual tooth objects can be displayed on the display of an orthodontic workstation and moved independently from each other, and thereby form the basis of planning treatment for the patient. The individual, virtual three-dimensional tooth objects are created by comparing the virtual model of the dentition to virtual, three-dimensional template teeth that are stored in memory in a process described in detail herein. The template teeth can include roots as well as crowns. The template teeth can be stored objects acquired from some external source or alternatively developed from a database of patient scans. Virtual three-dimensional brackets are also stored in the memory of the workstation.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: June 22, 2010
    Assignee: Orametrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Peer Sporbert, Hans Imgrund, Mario Leichner, Rohit Sachdeva
  • Patent number: 7717708
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: May 18, 2010
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 7699606
    Abstract: A method and apparatus for generating a orthodontic template that assists in the placement of an orthodontic apparatus includes processing that begins by obtaining a digital model of an orthodontic structure of an orthodontic patient. The processing continues by obtaining a selection of one of a plurality of orthodontic apparatuses for the orthodontic structure to produce a selected orthodontic apparatus. The processing then continues by obtaining a digital model of placement of the selected orthodontic apparatus on the digital model of the orthodontic structure. The processing then continues by retrieving a digital image of a tooth mounting apparatus (e.g., a bracket, a band, a headgear tube, etc.) of the selected apparatus for a given tooth.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: April 20, 2010
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Rudger Rubbert, Thomas Weise, Friedrich Riemeier, Michael Placke, Mathew Johnson
  • Patent number: 7695278
    Abstract: A method and system are disclosed for finding virtual tooth features on virtual three-dimensional models of the teeth of patients. The tooth features comprise marginal ridges, cusp tips, contact points, central groove and buccal groove. Tooth axes system plays a key role in identifying the tooth features. An iterative method is disclosed for improving the accuracy of the tooth axes system. A virtual three-dimension model preferably obtained by scanning the dentition of a patient forms the basis for determining the tooth features. Tooth features are derived for all categories of teeth including molars, premolars, canines and front teeth. Tooth features are very helpful and used in planning orthodontic treatment. The tooth features are determined automatically using the computerized techniques; and can be manually adjusted when necessary.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: April 13, 2010
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Hans Imgrund, Markus Kaufmann
  • Patent number: 7697721
    Abstract: In accordance with a specific embodiment of the present invention, an image is projected upon a surface. The image can include a pattern having a plurality of individual shapes used to measure and map the surface. The plurality of individual shapes include features that are detectable in a direction parallel to the plane formed by a projection axis of the projected shapes and a point associated with a view axis. The image further comprises a feature containing an encoding information for identifying the plurality of shapes individually. The feature containing encoding information can be a separate feature from each of the plurality of individual shapes, or may be a feature integral to the plurality of individual shapes. The feature containing encoding information is oriented such that the encoding information is retrieved along a line perpendicular to a plane formed by the projection axis and the point along the view axis. The use of the feature is used to perform multiframe reference independent scanning.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: April 13, 2010
    Assignee: Orametrix, Inc.
    Inventors: Rudger Rubbert, Peer Sporbert, Thomas Weise
  • Patent number: 7641473
    Abstract: A method and apparatus is provided for digitally checking the insertion quality of a target customized virtual arch wire designed during treatment planning prior to actually manufacturing the target arch wire. The method includes the steps of digitally simulating the insertion of the customized target virtual arch wire into the virtual brackets placed up on virtual teeth of a patient in an initial state of interest for checking if the arch wire could be inserted into the virtual brackets without conflicts or collisions. The initial state may be a malocclusion state or any intermediate treatment state of the patient. In the event the target virtual arch wire would cause conflicts, then the simulation optimizes the arch wire design in an attempt to eliminate the conflicts. In another aspect, a method is provided for selecting the recommended starting point for inserting the customized arch wire in the brackets placed on the dentition of the patient in the initial state.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: January 5, 2010
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Dimitij Kouzian, Hans Imgrund, Stephan Maetzel
  • Patent number: 7609875
    Abstract: A scanning system is disclosed including a hand-held scanning device for capturing three-dimensional information of an object. The scanner system includes a high-speed transceiver having a high-speed laser light source, a high frequency MEMS oscillating scanning mirror and software for frame registration. Laser based range finding technique is used to map the scanned object. MEMS oscillating at high speed enables rapid and accurate scanning of an object. The scanning can be performed without knowledge or even precise control of the position of the object relative to the scanner. Random movement of the object during scanning is also possible. The scanner can be used for a variety of purposes, including medical and industrial purposes. The illustrated embodiment is in-vivo scanning of human teeth for purposes of orthodontic treatment planning and diagnosis.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: October 27, 2009
    Assignee: Orametrix, Inc.
    Inventors: Yongqian Liu, Phillip Getto
  • Patent number: 7590462
    Abstract: Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 15, 2009
    Assignee: Orametrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Friedrich Riemeier, Rohit Sachdeva, Peer Sporbert
  • Patent number: 7585172
    Abstract: An interactive, software-based treatment planning method to correct a malocclusion is described. The method can be performed on an orthodontic workstation in a clinic or at a remote location such as a lab or precision appliance manufacturing center. The workstation stores a virtual three-dimensional model of the dentition of a patient and patient records. The virtual model is manipulated by the user to define a target situation for the patient, including a target archform and individual tooth positions in the archform. Parameters for an orthodontic appliance, such as the location of orthodontic brackets and resulting shape of an orthodontic archwire, are obtained from the simulation of tooth movement to the target situation and the placement position of virtual brackets. The treatment planning can also be executed remotely by a precision appliance service center having access to the virtual model of the dentition.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: September 8, 2009
    Assignee: Orametrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Rohit Sachdeva, Hans Imgrund, Peer Sporbert, Mario Leichner, Jens Troeger, Dimitrij Kouzian, Stephan Maetzel
  • Patent number: 7530811
    Abstract: A method is provided for automatically separating tooth crowns and gingival tissue in a virtual three-dimensional model of teeth and associated anatomical structures. The method orients the model with reference to a plane and automatically determines local maxima of the model and areas bounded by the local maxima. The method automatically determines saddle points between the local maxima in the model, the saddle points corresponding to boundaries between teeth. The method further positions the saddle points along a dental arch form. For each tooth, the method automatically identifies a line or path along the surface of the model linking the saddle points to each other, the path marking a transition between teeth and gingival tissue and between adjacent teeth in the model. The areas bounded by the lines correspond to the tooth crowns; the remainder of the model constitutes the gingival tissue.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: May 12, 2009
    Assignee: Orametrix, Inc.
    Inventors: Markus Kaufmann, Peer Sporbert, Phillip Getto
  • Patent number: 7471821
    Abstract: Method and apparatus for registering an object of known predetermined geometry to scanned three dimensional data such that the object's location may be verified. Such a known object may comprise a less than ideal three-dimensional (3-D) digital object such as a tooth, a dental appliance (e.g., as a tooth bracket model) or other like object, including portions thereof. Knowledge of such an object's location is generally helpful in planning orthodontic treatment, particularly where the location of the object needs to be determined or confirmed or where incomplete or poor scan data is obtained. Aspects of the present invention provide methods of effectively verifying dental appliance location and displaying appliance locations using a computer and three-dimensional models of teeth.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: December 30, 2008
    Assignee: OraMetrix, Inc.
    Inventors: Rüdger Rubbert, Hans Imgrund, Peer Sporbert, Stephan Maetzel, Thomas Weise
  • Patent number: 7461005
    Abstract: A method and apparatus for generating a patient treatment plan includes processing that begins by providing a list of health care services to a patient and/or care provider. The processing continues by prompting for input of digital information regarding the patient when health care services applicable to addressing the patient's treatment needs have been concurrently selected. The processing continues by determining whether a sufficient amount of digital information has been received. If so, the processing continues by simulating treatment of a patient based on the digital information, a treatment objective, and normalized patient data. The processing then continues by generating the patient treatment plan in accordance with the simulating of the treatment when the simulated treatment results have been acknowledged.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: December 2, 2008
    Assignee: Orametrix, Inc.
    Inventor: Rohit C. L. Sachdeva
  • Patent number: 7458812
    Abstract: Occlusal contact between upper and lower virtual three-dimensional teeth of a patient when the upper and lower arches are in an occlused condition are determined and displayed to the user on a user interface of a general purpose computing device. Various techniques for determining occlusal contacts are described. The areas where occlusal contact occurs is displayed on the user interface in a readily perceptible manner, such as by showing the occlusal contacts in green. If the proposed set-up would result in a interpenetration of teeth in opposing arches, such locations of interpenetration are illustrated in a contrasting color or shading (e.g., red). The ability to calculate distances and display occlusal contacts in a proposed set-up assists the user in planning treatment for the patient. The process can be extended to interproximal contact detection as well. The concepts also apply to dental prosthetics, such as crowns, fillings and dentures.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: December 2, 2008
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Hans Imgrund, Dimitij Kouzian, Stephan Maetzel, Rohit Sachdeva, Rüdger Rubbert
  • Patent number: 7442041
    Abstract: A method for monitoring tooth wear and a method for monitoring tooth wear and gingival recession and erosion by comparing three-dimensional virtual models at different times are described, as well as occlusal contact between upper and lower virtual three-dimensional teeth of a patient when the upper and lower arches are in an occluded condition are determined and displayed to the user on a user interface of a general purpose computing device. Various techniques for determining occlusal contacts are described. The areas where occlusal contact occurs is displayed on the user interface in a readily perceptible manner, such as by showing the occlusal contacts in green. If the proposed set-up would result in a interpenetration of teeth in opposing arches, such locations of interpenetration are illustrated in a contrasting color or shading (e.g., red). The ability to calculate distances and display occlusal contacts in a proposed set-up assists the user in planning treatment for the patient.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: October 28, 2008
    Assignee: OraMetrix, Inc.
    Inventors: Hans Imgrund, Rüdger Rubbert, Dimitrij Kouzian, Peer Sporbert, Stephan Maetzel, Rohit Sachdeva
  • Patent number: 7422430
    Abstract: A method and apparatus for arch wire receptacle (e.g., brackets, bands, headgear tubes, etc.) optimization includes processing that begins by obtaining a digital model of an orthodontic structure of an orthodontic patient. The processing then continues by retrieving a digital model of an initial arch wire receptacle that was selected from a plurality of digital models of arch wire receptacles. The processing then continues by digitally placing the digital model of the initial arch wire receptacle on a given tooth of the digital model of the orthodontic structure to provide a digital arch wire receptacle placement. The process then proceeds by retrieving a digital model of an arch wire. For the given tooth, the processing continues by digitally modeling a force system on the tooth based on the digital model of the initial arch wire receptacle, the digital arch wire receptacle placement, and the digital model of the arch wire.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: September 9, 2008
    Assignee: OraMetrix Inc.
    Inventors: Rohit Sachdeva, Rudger Rubbert, Thomas Weise, Friedrich Riemeier
  • Patent number: 7379584
    Abstract: A method and system are provided for constructing a virtual three-dimensional model of an object using a data processing system, and at least one machine-readable memory accessible to said data processing system. A set of at least two digital three-dimensional frames of portions of the object are obtained from a source, such as a computing system coupled to an optical or laser scanner, CT scanner, Magnetic Resonance Tomography scanner or other source. The at least two frames comprise a set of point coordinates in a three dimensional coordinate system providing differing information of the surface of the object. The frames provide a substantial overlap of the represented portions of the surface of the object, but do not coincide exactly for example due to movement of the scanning device relative to the object between the generation of the frame. Data representing the set of frames are stored in the memory.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: May 27, 2008
    Assignee: OraMetrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Peer Sporbert, Hans Imgrund, Dimitrij Kouzian