Abstract: Set forth are methods for preparing encoded three-dimensional objects. Magnetic particles or particles containing compounds that emit identifiable spectra, or combinations of multiple different magnetic and/or spectral emitting particles are embedded in the 3D object during formation. The particles can be added into the build material before construction, injected in a controlled manner into the 3D object during formation or added to the surface of the object during or after formation. The embedded material allows information regarding when and how the product was manufactured and the materials used to produce the product.
Abstract: Methods, devices and systems for efficient 3D printing using a single compact device are set forth. Some embodiments utilize a circular-shaped build area revolving symmetrically around a single center point utilizing a continuous helical printing process. Laser diodes or vertical-cavity surface-emitting lasers (VCSELs) are utilized as an energy source for curing the print material. The VCSELs can be integrated with the print head and can form an array which can be staggered or linear. In some embodiments, the VCSELs (and the corresponding print head) can be connected to a rotating platform, which can rotate independently from the revolving build area. In some embodiments, a thermoelectric cooler and/or a fluid cooler can provide cooling to the VCSELS.
Abstract: Methods, devices and systems for efficient 3D printing that address conventional inefficiencies while utilizing a single compact device are set forth. Some embodiments utilize a circular-shaped build area revolving symmetrically around a single center point utilizing a continuous helical printing process. In some embodiments, vertical-cavity surface-emitting lasers (VCSELs) are utilized as an energy source for curing the print material. The VCSELs can be integrated with the print head and can form an array which can be staggered or linear. In some embodiments, the VCSELs (and the corresponding print head)can be connected to a rotating platform, which can rotate independently from the revolving build area. In some embodiments, a thermoelectric cooler and/or a fluid cooler can provide cooling to the VCSELS.
Abstract: Methods, devices and systems for efficient 3D printing that address conventional inefficiencies while utilizing a single compact device are set forth. Some embodiments utilize a circular-shaped build area revolving symmetrically around a single center point utilizing a continuous helical printing process. In one embodiment a liquid photopolymer for solidification is deposited on a build platform to form the physical object The Build platform is continuously rotated and simultaneously raised in a gradual programmed manner. Focused from below the platform produces a single continuous “layer” of material deposited and bonded in a helical fashion.