Abstract: A digital communication circuit can be implemented can be implemented in a CMOS, or other IC structure. The digital circuit can utilize negative frequency removers or image frequency removers in the digital domain. The circuit can include mixers, switches, a complex filter, a low noise amplifier and summers. The image frequency can be removed digitally.
Abstract: A digital frequency synthesizer can be implemented with single source design, a multiplexer design, a fractional divider design, or a frequency multiplier and frequency divider design. Implementations can utilize a controller dithering circuit or a delta-sigma modulator. The frequency synthesizer can be implemented in a CMOS structure and can utilize a clean up phase locked loop (PLL).
Abstract: A digital communication circuit can be implemented can be implemented in a CMOS, or other IC structure. The digital circuit can utilize negative frequency removers or image frequency removers in the digital domain. The circuit can include mixers, switches, a complex filter, a low noise amplifier and summers. The image frequency can be removed digitally.
Abstract: A digital frequency synthesizer can be implemented with single source design, a multiplexer design, a fractional divider design, or a frequency multiplier and frequency divider design. Implementations can utilize a controller dithering circuit or a delta-sigma modulator. The frequency synthesizer can be implemented in a CMOS structure and can utilize a clean up phase locked loop (PLL).