Patents Assigned to Orthopaedic Hospital
  • Publication number: 20230218299
    Abstract: Disclosed are a lead method of suturing an acutely ruptured Achilles tendon and a device used in it. The suturing device includes a suture line, guide lines, a clamping instrument and suture needles. As performing suturing, the clamping instrument is inserted into the fascia sheath of Achilles tendon to clamp Achilles tendon, the suture line and the guide lines are made to penetrate Achilles tendon and skin through the threading hole on the clamping instrument by the suture needle, wherein the suture line is located far away from Achilles tendon rupture; the guide lines are used to guide the suture line, so that both ends of the suture line can penetrate Achilles tendon in turn along the guide lines, and the suture line is tightened and knotted on the two ruptured Achilles tendons.
    Type: Application
    Filed: April 21, 2022
    Publication date: July 13, 2023
    Applicant: ZHENGZHOU ORTHOPAEDICS HOSPITAL
    Inventor: Changsong CAO
  • Patent number: 9302028
    Abstract: The present invention presents methods for making oxidation-resistant and wear-resistant polyethylenes and medical implants made therefrom. Preferably, the implants are components of prosthetic joints, e.g., a bearing component of an artificial hip or knee joint. The resulting oxidation-resistant and wear-resistant polyethylenes and implants are also disclosed.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: April 5, 2016
    Assignee: ORTHOPAEDIC HOSPITAL
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Patent number: 9242025
    Abstract: The present invention presents methods for making oxidation-resistant and wear-resistant polyethylenes and medical implants made therefrom. Preferably, the implants are components of prosthetic joints, e.g., a bearing component of an artificial hip or knee joint. The resulting oxidation-resistant and wear-resistant polyethylenes and implants are also disclosed.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: January 26, 2016
    Assignee: ORTHOPAEDIC HOSPITAL
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Patent number: 9155817
    Abstract: The present invention presents methods for making oxidation-resistant and wear-resistant polyethylenes and medical implants made therefrom. Preferably, the implants are components of prosthetic joints, e.g., a bearing component of an artificial hip or knee joint. The resulting oxidation-resistant and wear-resistant polyethylenes and implants are also disclosed.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: October 13, 2015
    Assignee: Orthopaedic Hospital
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Patent number: 8796347
    Abstract: The present invention presents methods for making oxidation-resistant and wear-resistant polyethylenes and medical implants made therefrom. Preferably, the implants are components of prosthetic joints, e.g., a bearing component of an artificial hip or knee joint. The resulting oxidation-resistant and wear-resistant polyethylenes and implants are also disclosed.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: August 5, 2014
    Assignee: Orthopaedic Hospital
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Patent number: 8658710
    Abstract: The present invention presents methods for making oxidation-resistant and wear-resistant polyethylenes and medical implants made therefrom. Preferably, the implants are components of prosthetic joints, e.g., a bearing component of an artificial hip or knee joint. The resulting oxidation-resistant and wear-resistant polyethylenes and implants are also disclosed.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 25, 2014
    Assignee: Orthopaedic Hospital
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Patent number: 8008365
    Abstract: The present invention discloses methods for enhancing the wear-resistance of polymers, the resulting polymers, and in vivo implants made from such polymers. One aspect of this invention presents a method whereby a polymer is irradiated, preferably with gamma radiation, then thermally treated, such as by remelting of annealing. The resulting polymeric composition preferably has its most oxidized surface layer removed. Another aspect of the invention presents a general method for optimizing the wear resistance and desirable physical and/or chemical properties of a polymer by crosslinking and thermally treating it. The resulting polymeric compositions is wear-resistant and may be fabricated into an in vivo implant.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 30, 2011
    Assignee: Orthopaedic Hospital
    Inventors: Fu-Wen Shen, Harry A. McKellop, Ronald Salovey
  • Patent number: 8003709
    Abstract: The present invention discloses methods for enhancing the wear-resistance of polymers, the resulting polymers, and in vivo implants made from such polymers. One aspect of this invention presents a method whereby a polymer is irradiated, preferably with gamma radiation, then thermally treated, such as by remelting of annealing. The resulting polymeric composition preferably has its most oxidized surface layer removed. Another aspect of the invention presents a general method for optimizing the wear resistance and desirable physical and/or chemical properties of a polymer by crosslinking and thermally treating it. The resulting polymeric compositions is wear-resistant and may be fabricated into an in vivo implant.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 23, 2011
    Assignee: Orthopaedic Hospital
    Inventors: Fu-Wen Shen, Harry A. McKellop, Ronald Salovey
  • Patent number: 6800670
    Abstract: The present invention discloses methods for enhancing the wear-resistance of polymers, the resulting polymers, and in vivo implants made from such polymers. One aspect of this invention presents a method whereby a polymer is irradiated, preferably with gamma radiation, then thermally treated, such as by remelting of annealing. The resulting polymeric composition preferably has its most oxidized surface layer removed. Another aspect of the invention presents a general method for optimizing the wear resistance and desirable physical and/or chemical properties of a polymer by crosslinking and thermally treating it. The resulting polymeric compositions is wear-resistant and may be fabricated into an in vivo implant.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: October 5, 2004
    Assignees: Orthopaedic Hospital, University of Southern California
    Inventors: Fu-Wen Shen, Harry A. McKellop, Ronald Salovey
  • Publication number: 20030045603
    Abstract: The present invention discloses a method for enhancing the wear-resistance of polymers by crosslinking them, especially before irradiation sterilization. In particular, this invention presents the use of chemically crosslinked ultrahigh molecular weight polyethylene in in vivo implants.
    Type: Application
    Filed: October 3, 2002
    Publication date: March 6, 2003
    Applicant: The Orthopaedic Hospital and University of Southern California
    Inventors: Ronald Salovey, Harry A. McKellop, Fu-Wen Shen
  • Patent number: 6494917
    Abstract: A method for improving the wear resistance of an implant, made of polyethylene, by crosslinking its bearing surface layer, while leaving its non-bearing interior uncrosslinked. Such crosslinking may be achieved by electron-beam irradiation or by chemical crosslinking of the implant or the polyethylene from which the implant is made. The resulting implant or polyethylene may be further treated to remove the residual free radicals (generated by the electron beam crosslinking process); to remove residual chemicals (generated by the chemical crosslinking process); to remove its most oxidized layer; to stabilize its size and shape; to improve, by remelting, its oxidation resistance; and/or to reshape it into the final implant. Also presented are the resulting implant and polyethylene.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: December 17, 2002
    Assignees: Orthopaedic Hospital, University of Southern California
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Publication number: 20020037944
    Abstract: The present invention discloses methods for enhancing the wear-resistance of polymers, the resulting polymers, and in vivo implants made from such polymers. One aspect of this invention presents a method whereby a polymer is irradiated, preferably with gamma radiation, then thermally treated, such as by remelting of annealing. The resulting polymeric composition preferably has its most oxidized surface layer removed. Another aspect of the invention presents a general method for optimizing the wear resistance and desirable physical and/or chemical properties of a polymer by crosslinking and thermally treating it. The resulting polymeric compositions is wear-resistant and may be fabricated into an in vivo implant.
    Type: Application
    Filed: February 26, 2001
    Publication date: March 28, 2002
    Applicant: The Orthopaedic Hospital
    Inventors: Fu-Wen Shen, Harry A. McKellop, Ronald Salovey
  • Publication number: 20010049401
    Abstract: The present invention discloses a method for enhancing the wear-resistance of polymers by crosslinking them, especially before irradiation sterilization. In particular, this invention presents the use of chemically crosslinked ultrahigh molecular weight polyethylene in in vivo implants.
    Type: Application
    Filed: July 2, 2001
    Publication date: December 6, 2001
    Applicant: The Orthopaedic Hospital and University of Southern California
    Inventors: Ronald Salovey, Harry A. McKellop, Fu-Wen Shen
  • Patent number: 6281264
    Abstract: The present invention discloses a method for enhancing the wear-resistance of polymers by crosslinking them, especially before irradiation sterilization. In particular, this invention presents the use of chemically crosslinked ultrahigh molecular weight polyethylene in in vivo implants.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: August 28, 2001
    Assignees: The Orthopaedic Hospital, University of Southern California
    Inventors: Ronald Salovey, Harry A. McKellop, Fu-Wen Shen
  • Patent number: 6228900
    Abstract: The present invention discloses methods for enhancing the wear-resistance of polymers, the resulting polymers, and in vivo implants made from such polymers. One aspect of this invention presents a method whereby a polymer is irradiated, preferably with gamma radiation, then thermally treated, such as by remelting of annealing. The resulting polymeric composition preferably has its most oxidized surface layer removed. Another aspect of the invention presents a general method for optimizing the wear resistance and desirable physical and/or chemical properties of a polymer by crosslinking and thermally treating it. The resulting polymeric compositions is wear-resistant and may be fabricated into an in vivo implant.
    Type: Grant
    Filed: January 6, 1999
    Date of Patent: May 8, 2001
    Assignee: The Orthopaedic Hospital and University of Southern California
    Inventors: Fu-Wen Shen, Harry A. McKellop, Ronald Salovey
  • Patent number: 6165220
    Abstract: A method for improving the wear resistance of an implant by crosslinking its bearing surface layer, while leaving its non-bearing interior uncrosslinked. Such crosslinking may be achieved by electron-beam irradiation or by chemical crosslinking of the implant. The resulting implant may be further treated to remove the residual free radicals (generated by the electron beam crosslinking process), to remove its most oxidized layer, and/or to stabilize its size. In the case of chemical crosslinking, the resulting implant may be further treated to remove residual chemicals from the crosslinked surface layer.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: December 26, 2000
    Assignees: The Orthopaedic Hospital, University of Southern California
    Inventors: Harry Alden McKellop, Fu-Wen Shen