Patents Assigned to Orthosensor, Inc.
-
Patent number: 9289163Abstract: An orthopedic system to monitor a parameter related to the muscular-skeletal system is disclosed. The orthopedic system includes electronic circuitry, a sensor, and a remote system to monitor and measure. The sensor is configured to measure color or turbidity. The electronic circuitry is coupled to and interfaces with the sensor. The electronic circuit includes a transmitter to transmit measurement data from the sensor to the remote system. The orthopedic system is configured to monitor color or turbidity of a fluid in proximity to the muscular-skeletal system. The orthopedic system can transmit a signal when a predetermined color is detected or when the turbidity of the fluid exceeds a predetermined value. Alternatively, the remote system includes a processor and software configured to analyze the measurement data from the sensor and transmit a signal when a predetermined color is detected or when the turbidity of the fluid exceeds a predetermined value.Type: GrantFiled: March 10, 2014Date of Patent: March 22, 2016Assignee: ORTHOSENSOR INC.Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
-
Patent number: 9271675Abstract: An orthopedic implant having a three-axis accelerometer is disclosed. The three-axis accelerometer is used to detect micro-motion in the implant. The micro-motion can be due to loosening of the implant. The implant is configured to couple to the muscular-skeletal system. In one embodiment, the implant is configured to couple to bone. An impact force is imparted to the bone or implant. The impact force can be provided via a transducer coupled to the implant. In the example, the impact force is imparted along a single axis. The three-axis accelerometer measures the impact force along each axis. Resultant peaks of the quantitative measurement and the frequencies at which they occur are measured. The peaks and frequencies of the measurements correspond to micro-motion. Typically, the frequency of interest is less than 1 KHz to determine if micro-motion is occurring.Type: GrantFiled: June 3, 2014Date of Patent: March 1, 2016Assignee: Orthosensor Inc.Inventors: Marc Stein, Yoong-Joong Kim, Matthew J. Cohen, Chelsea A. Liddell
-
Patent number: 9265462Abstract: A system and method for is provided for operation of an orthopedic system. The system includes a load sensor for converting an applied pressure associated with a force load on an anatomical joint, and an ultrasonic device for creating a low-power short-range ultrasonic sensing field within proximity of the load sensing unit for assessing alignment. The system can adjust a strength and range of the ultrasonic sensing field according to position. It can report audible and visual information associated with the force load and alignment. Other embodiments are disclosed.Type: GrantFiled: March 25, 2013Date of Patent: February 23, 2016Assignee: ORTHOSENSOR INCInventors: Jason McIntosh, Martin Roche, Marc Boillot, Carlos Gil
-
Patent number: 9265447Abstract: A graphical user interface having a portion of an orthopedic system displayed on an electronic display. Where the graphical user interface displays: a parameter of the orthopedic system; a portion of an orthopedic insert; and a parameter of the orthopedic insert. Where in response to detecting movement of the orthopedic system the displayed portion of the orthopedic system is moved, a change of the parameter of the orthopedic system is displayed, and a change in parameter of the orthopedic insert is displayed.Type: GrantFiled: September 13, 2013Date of Patent: February 23, 2016Assignee: ORTHOSENSOR INC.Inventors: Marc Stein, Martin Roche
-
Patent number: 9259179Abstract: An orthopedic implant having an energy-harvesting device is disclosed. In one embodiment the orthopedic implant is a prosthetic component of a joint of the muscular-skeletal system. The orthopedic implant can include electronic circuitry, a power source, and one or more sensors for measuring a parameter of the muscular-skeletal system or a parameter of in proximity to the implant. The energy-harvesting device generates charge for powering the electronic circuitry using movement of the muscular-skeletal system. The energy-harvesting device comprises a piezo-electric element that converts changes in force into charge that is stored onto a storage device. The energy-harvesting device is coupled to the patella of a knee joint. Movement of the knee joint changes a force applied to the energy-harvesting device thereby generating charge that is coupled to circuitry in a prosthetic component of the knee joint.Type: GrantFiled: June 3, 2014Date of Patent: February 16, 2016Assignee: ORTHOSENSOR INC.Inventor: Marc Stein
-
Patent number: 9259172Abstract: A method of providing feedback to a user of an orthopedic alignment system, which displays: a portion of an orthopedic system; a parameter of the orthopedic system; a portion of an orthopedic insert in the display; and a parameter of the orthopedic insert. Where the method detects movement of the orthopedic system, and moves the displayed portion of the orthopedic system in response to the movement of the orthopedic system. Where the method additionally detects changes of the parameter of the orthopedic insert and of the parameter of the orthopedic system during movement of the orthopedic system, and displays the changes of the parameter of the orthopedic insert and the parameter of the orthopedic system.Type: GrantFiled: September 13, 2013Date of Patent: February 16, 2016Assignee: ORTHOSENSOR INC.Inventors: Marc Stein, Martin Roche
-
Patent number: 9237885Abstract: At least one embodiment is directed to a tracking system for the muscular-skeletal system. The tracking system can identify position and orientation. The tracking system can be attached to a device or integrated into a device. In one embodiment, the tracking system couples to a handheld tool. The handheld tool with the tracking system and one or more sensors can be used to generate tracking data of the tool location and trajectory while measuring parameters of the muscular-skeletal system at an identified location. The tracking system can be used in conjunction with a second tool to guide the second tool to the identified location of the first tool. The tracking system can guide the second tool along the same trajectory as the first tool. For example, the second tool can be used to install a prosthetic component at a predetermined location and a predetermined orientation. The tracking system can track hand movements of a surgeon holding the handheld tool within 1 millimeter over a path less than 5 meters.Type: GrantFiled: November 9, 2012Date of Patent: January 19, 2016Assignee: ORTHOSENSOR INC.Inventors: Marc Stein, Glen Vaughn
-
Patent number: 9226694Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.Type: GrantFiled: March 5, 2014Date of Patent: January 5, 2016Assignee: ORTHOSENSOR INCInventors: Marc Stein, Andrew Chase
-
Patent number: 9189083Abstract: A portable measurement system is provided comprising a probe, two trackers, a receiver and a pod. A user interface control captures a location and position of the probe in a three-dimensional sensing space with respect to a coordinate system of the receiver from time of flight waveform analysis. The system suppresses a ringing portion of the received ultrasonic and minimizes distortion associated with ultrasonic transducer ring-down during high-resolution position tracking of the probe and the two trackers. Media is presented according to a customized use of the probe and two trackers during an operation workflow.Type: GrantFiled: October 20, 2011Date of Patent: November 17, 2015Assignee: ORTHOSENSOR INC.Inventors: Martin Roche, Jason McIntosh, Marc Boillot, Carlos Gil
-
Patent number: 9161717Abstract: At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The internal cavity is isolated from the external environment and can be hermetically sealed. The exterior surfaces of the support structure and the support structure are sterilized.Type: GrantFiled: September 23, 2011Date of Patent: October 20, 2015Assignee: ORTHOSENSOR INC.Inventors: Marc Stein, Andrew P. Miller, Andrew U. Chase, Jason Addink
-
Patent number: 9141254Abstract: A navigation system is provided to direct control of a user interface work-flow during a procedure. Such a need can arise in sterile environments were touchless interaction is preferable over physical contact. The system includes a wand and receiver for controlling a pagination and parameter entry of the work-flow, a processor to compare wand movement profiles, a clock for limiting a time window between the comparison, and a controller for activating a user interface control in the workflow when a wand movement profile or gesture is recognized. The comparison can be based on the wand's direction, orientation and movement to and from various locations. Other embodiments are disclosed.Type: GrantFiled: October 8, 2010Date of Patent: September 22, 2015Assignee: ORTHOSENSOR INCInventors: Marc Boillot, Jason McIntosh
-
Patent number: 9125627Abstract: A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. Used intra-operatively, the sensing insert device (100) comprises an insert dock 202 and a sensing module 200. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensors (303), electronic circuitry (307), and communication circuitry (320). The electronic circuitry (307) operatively couples to the one or more sensors (303) to measure the parameter. A transmitter (309) transmits parameter measurements. An induction coil (1404) is coupled electromagnetically to a wireless energy source (1402). The induction coil converts electromagnetic energy waves to a signal that powers the sensing module (200). The signal includes information or data.Type: GrantFiled: June 29, 2010Date of Patent: September 8, 2015Assignee: ORTHOSENSOR INC.Inventor: Marc Stein
-
Patent number: 9119733Abstract: A prosthetic component suitable for trialing or long-term implantation is provided. The prosthetic component includes at least one sensor for measuring a parameter of the muscular-skeletal system or a biological parameter is disclosed. The prosthetic component comprises a conductive material. Electronic circuitry and sensors are housed within the prosthetic component. Data from the prosthetic component can be transmitted to a remote system. The prosthetic component can comprise steel, titanium, cobalt, an alloy, or other conductive material. At least a portion of the conductive material comprising the prosthetic component is coupled to ground to shield the sensor from parasitic coupling that can affect measurement accuracy. The prosthetic component can have an opening in the shield to allow sensing or transmission of data.Type: GrantFiled: June 5, 2013Date of Patent: September 1, 2015Assignee: ORTHOSENSOR INC.Inventors: Marc Stein, Andrew Chase
-
Patent number: 9011448Abstract: A low-cost and compact electronic device toolset is provided for orthopedic assisted navigation. The toolset comprises wireless sensorized devices that communicate directly with one another. A computer workstation is an optional component for further visualization. The sensorized devices are constructed with low-cost transducers and are self-powered. The toolset is disposable and incurs less hospital maintenance and overhead. As one example, the toolset reports anatomical alignment during a surgical workflow procedure. Other embodiments are disclosed.Type: GrantFiled: October 8, 2010Date of Patent: April 21, 2015Assignee: Orthosensor Inc.Inventors: Martin Roche, Marc Boillot, Jason McIntosh
-
Publication number: 20150080901Abstract: A system for enabling and disabling a medical device. The system includes a cradle having a magnet for generating a magnetic field. The cradle supports and aligns the medical device in a predetermined orientation. Medical device placed in the cradle exposes a magnetic sensitive switch to the magnetic field of the magnet that produces a change in state of the magnetic sensitive switch. Medical device further includes a switch, indicator, logic circuitry, delay circuit, and detect circuit for coupling a power source to electronic circuitry. In a first mode of operation the medical device can be turned on and then turned off. In a second mode of operation the medical device cannot be turned off after being turned on.Type: ApplicationFiled: November 21, 2014Publication date: March 19, 2015Applicant: ORTHOSENSOR INC.Inventor: Marc Stein
-
Patent number: 8979758Abstract: A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (1802), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (1802) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The cap (1702) is adhesively coupled to the housing (1706). The adhesive is flexible allowing movement of the cap (1702) when a force, pressure, or load is applied thereto.Type: GrantFiled: June 29, 2010Date of Patent: March 17, 2015Assignee: Orthosensor IncInventors: Marc Stein, Jim Ellis, Martin Roche
-
Patent number: 8945133Abstract: A spine alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vetebral space. The system can distract vertebrae to a first height and measure the load applied by the spine region. The GUI can indicate that the load is outside a predetermined range. The spine region can be distracted to a second height where the load is measured within the predetermined load range.Type: GrantFiled: September 23, 2011Date of Patent: February 3, 2015Assignee: Orthosensor IncInventors: Marc Stein, Martin Roche, Marc Boillot
-
Patent number: 8939030Abstract: A sensor system uses positive closed-loop feedback to provide energy waves into a medium. The medium can be coupled to the muscular-skeletal system or be part of the muscular-skeletal system. A sensor comprises one or more transducers, an edge detect circuit or a reflecting surface. A parameter is applied to the medium and the parameter affects the medium. A transducer receives an energy wave that has traversed the medium and generates an energy wave signal. The edge-detect receiver receives the energy wave signal signal from the transducer and generates a pulse upon sensing a leading edge corresponding to a wave front of the energy wave. The edge-detect receiver comprises a preamplifier, a differentiator, a digital pulse circuit, and a deblank circuit. The transit time, phase, or frequency is measured of the propagating energy waves and correlated to the parameter being measured.Type: GrantFiled: May 24, 2013Date of Patent: January 27, 2015Assignee: Orthosensor IncInventors: Marc Stein, Andrew Kelly
-
Patent number: 8926530Abstract: At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The cavity is sterilized through a port. A membrane is between the port and the cavity. A sterilization gas permeates the membrane for sterilizing cavity. The membrane prevents ingress of solids and liquids to the cavity.Type: GrantFiled: September 23, 2011Date of Patent: January 6, 2015Assignee: OrthoSensor IncInventors: Marc Stein, Andrew P. Miller, Jason Addink, Andrew U. Chase
-
Patent number: 8911448Abstract: A system for enabling a medical device. The system includes a cradle having a magnet for generating a magnetic field. The cradle supports and aligns the medical device in a predetermined orientation. Medical device placed in the cradle exposes a magnetic sensitive switch to the magnetic field of the magnet that produces a change in state of the magnetic sensitive switch. Medical device further includes a switch, indicator, logic circuitry, delay circuit, and detect circuit for coupling a power source to electronic circuitry. In a first mode of operation the medical device can be turned on and then turned off. In a second mode of operation the medical device cannot be turned off after being turned on.Type: GrantFiled: September 23, 2011Date of Patent: December 16, 2014Assignee: Orthosensor, IncInventor: Marc Stein