Patents Assigned to OSI Optoelectronics, Inc.
  • Patent number: 11885614
    Abstract: Embodiments of the present specification provide an apparatus for detecting an angle of rotation of a rotating member. A light source emits light rays which are conditioned by a light conditioner to control a light beam geometry and emission pattern of the light rays. The conditioned rays are incident on an optical disk that emits refracted rays in form of a light spot on an optical detector. The optical disk rotates in synchronization with the rotating member. The optical detector uses position of the light spot to output an analog signal continuous and ratio-metric to the angle of rotation of the rotating member.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: January 30, 2024
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Jean-Pierre Maufras, Michael John Frick, Michel Chiasson, Teodor Petrea
  • Patent number: 10224449
    Abstract: A photoresistor comprises a silicon-on-insulator substrate (101) comprising a device layer (4). In an example embodiment and mode at least two non-contiguous first highly conductive regions (2, 3) of semiconductor material are formed on a surface of the device layer, and at least one active region (1) of a high resistivity semiconductor material of a same conductivity type as the first highly conductive regions are formed to propagate through a whole thickness of the device layer and to electrically contact the at least two non-contiguous first highly conductive regions.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: March 5, 2019
    Assignee: OSI Optoelectronics, Inc.
    Inventor: Alexander O. Goushcha
  • Patent number: 9691934
    Abstract: The present invention is a photodiode or photodiode array having improved ruggedness for a shallow junction photodiode which is typically used in the detection of short wavelengths of light. In one embodiment, the photodiode has a relatively deep, lightly-doped P zone underneath a P+ layer. By moving the shallow junction to a deeper junction in a range of 2-5 ?m below the photodiode surface, the improved device has improved ruggedness, is less prone to degradation, and has an improved linear current.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: June 27, 2017
    Assignee: OSI Optoelectronics, Inc.
    Inventor: Peter Steven Bui
  • Patent number: 9577121
    Abstract: The present invention is directed to a position sensing detector made of a photodiode having a semi insulating substrate layer; a buffered layer that is formed directly atop the semi-insulating substrate layer, an absorption layer that is formed directly atop the buffered layer substrate layer, a cap layer that is formed directly atop the absorption layer, a plurality of cathode electrodes electrically coupled to the buffered layer or directly to the cap layer, and at least one anode electrode electrically coupled to a p-type region in the cap layer. The position sensing detector has a photo-response non-uniformity of less than 2% and a position detection error of less than 10 ?m across the active area.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: February 21, 2017
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 9276022
    Abstract: The present application is directed to novel front side illuminated, back side contact photodiodes and arrays thereof. In one embodiment, the photodiode has a substrate with at least a first and a second side and a plurality of electrical contacts physically confined to the second side. The electrical contacts are in electrical communication with the first side through a doped region of a first type and a doped region of a second type, each of the regions substantially extending from the first side through to the second side. In another embodiment, the photodiode includes a wafer with at least a first and a second side; and a plurality of electrical contacts physically confined to the second side, where the electrical contacts are in electrical communication with the first side through a diffusion of a p+region through the wafer and a diffusion of an n+region through the wafer.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 1, 2016
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 9214588
    Abstract: The present invention is directed toward a dual junction photodiode semiconductor devices with improved wavelength sensitivity. The photodiode employs a high quality n-type layer with relatively lower doping concentration and enables high minority carrier lifetime and high quantum efficiency with improved responsivity at multiple wavelengths. In one embodiment, the photodiode comprises a semiconductor substrate of a first conductivity type, a first impurity region of a second conductivity type formed epitaxially in the semiconductor substrate, a second impurity region of the first conductivity type shallowly formed in the epitaxially formed first impurity region, a first PN junction formed between the epitaxially formed first impurity region and the second impurity region, a second PN junction formed between the semiconductor substrate and the epitaxially formed first impurity region, and at least one passivated V-groove etched into the epitaxially formed first impurity region and the semiconductor substrate.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: December 15, 2015
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja, Manoocher Mansouri Aliabadi
  • Patent number: 9178092
    Abstract: The present application is a photodiode detector array for use in computerized tomography (CT) and non-CT applications. Specifically, the present application is a high-density photodiode arrays, with low dark current, low capacitance, high signal to noise ratio, high speed, and low crosstalk that can be fabricated on relatively large substrate wafers. More specifically the photodiode array of the present application is fabricated such that the PN-junctions are located on both the front side and back side surfaces of the array, and wherein the front side PN-junction is in electrical communication with the back side PN-junction. Still more specifically, the present application is a photodiode array having PN-junctions that are electrically connected from the front to back surfaces and which can be operated in a fully depleted mode at low reverse bias.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 3, 2015
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 9170096
    Abstract: The specification discloses a pulsed time-of-flight laser range finding system used to obtain vehicle classification information. The sensor determines a distance range to portions of a vehicle traveling within a sensing zone of the sensor. A scanning mechanism made of a four facet cube, having reflective surfaces, is used to collimate and direct the laser toward traveling vehicles. A processing system processes the respective distance range data and angle range data for determining the three-dimensional shape of the vehicle.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: October 27, 2015
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Keith Fowler, Nan-Ming Lai
  • Patent number: 9147777
    Abstract: The present invention is directed to a position sensing detector made of a photodiode having a semi insulating substrate layer; a buffered layer that is formed directly atop the semi-insulating substrate layer, an absorption layer that is formed directly atop the buffered layer substrate layer, a cap layer that is formed directly atop the absorption layer, a plurality of cathode electrodes electrically coupled to the buffered layer or directly to the cap layer, and at least one anode electrode electrically coupled to a p-type region in the cap layer. The position sensing detector has a photo-response non-uniformity of less than 2% and a position detection error of less than 10 ?m across the active area.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: September 29, 2015
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 9035412
    Abstract: The present invention is directed toward a detector structure, detector arrays, and a method of detecting incident radiation. The present invention comprises a photodiode array and method of manufacturing a photodiode array that provides for reduced radiation damage susceptibility, decreased affects of crosstalk, reduced dark current (current leakage) and increased flexibility in application.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 19, 2015
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8912615
    Abstract: The present invention is a photodiode or photodiode array having improved ruggedness for a shallow junction photodiode which is typically used in the detection of short wavelengths of light. In one embodiment, the photodiode has a relatively deep, lightly-doped P zone underneath a P+ layer. By moving the shallow junction to a deeper junction in a range of 2-5 ?m below the photodiode surface, the improved device has improved ruggedness, is less prone to degradation, and has an improved linear current.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: December 16, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8907440
    Abstract: The present specification discloses front-side contact back-side illuminated (FSC-BSL) photodiode array having improved characteristics such as high speed of each photodiode, uniformity of the bias voltage applied to different photodiode, low bias voltage, reduced resistance of each photodiode, and an associated reduction in noise. The photodiode array is made of photodiodes with front metallic cathode pads, front metallic anode pad, back metallic cathode pads, n+ doped regions and a p+ doped region. The front metallic cathode pads physically contact the n+ doped regions and the front metallic anode pad physically contacts the p+ doped region. The back metallic cathode pads physically contact the n+ doped region.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: December 9, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8816464
    Abstract: The present invention is a photodiode and/or photodiode array, having a p+ diffused area that is smaller than the area of a mounted scintillator crystal, designed and manufactured with improved device characteristics, and more particularly, has relatively low dark current, low capacitance and improved signal-to-noise ratio characteristics. More specifically, the present invention is a photodiode and/or photodiode array that includes a metal shield for reflecting light back into a scintillator crystal, thus allowing for a relatively small p+ diffused area.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: August 26, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8796750
    Abstract: This invention comprises plurality of edge illuminated photodiodes. More specifically, the photodiodes of the present invention comprise novel structures designed to minimize reductions in responsivity due to edge surface recombination and improve quantum efficiency. The novel structures include, but are not limited to, angled facets, textured surface regions, and appropriately doped edge regions.
    Type: Grant
    Filed: November 11, 2012
    Date of Patent: August 5, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja, Manoocher Mansouri
  • Patent number: 8766392
    Abstract: The present invention is directed toward a detector structure, detector arrays, and a method of detecting incident radiation. The present invention comprises a photodiode array and method of manufacturing a photodiode array that provides for reduced radiation damage susceptibility, decreased affects of crosstalk, reduced dark current (current leakage) and increased flexibility in application.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: July 1, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8698197
    Abstract: The present invention is directed to a position sensing detector made of a photodiode having a semi insulating substrate layer; a buffered layer that is formed directly atop the semi-insulating substrate layer, an absorption layer that is formed directly atop the buffered layer substrate layer, a cap layer that is formed directly atop the absorption layer, a plurality of cathode electrodes electrically coupled to the buffered layer or directly to the cap layer, and at least one anode electrode electrically coupled to a p-type region in the cap layer. The position sensing detector has a photo-response non-uniformity of less than 2% and a position detection error of less than 10 ?m across the active area.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: April 15, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8686529
    Abstract: The present invention is directed toward a dual junction photodiode semiconductor devices with improved wavelength sensitivity. The photodiode employs a high quality n-type layer with relatively lower doping concentration and enables high minority carrier lifetime and high quantum efficiency with improved responsivity at multiple wavelengths. In one embodiment, the photodiode comprises a semiconductor substrate of a first conductivity type, a first impurity region of a second conductivity type formed epitaxially in the semiconductor substrate, a second impurity region of the first conductivity type shallowly formed in the epitaxially formed first impurity region, a first PN junction formed between the epitaxially formed first impurity region and the second impurity region, a second PN junction formed between the semiconductor substrate and the epitaxially formed first impurity region, and at least one passivated V-groove etched into the epitaxially formed first impurity region and the semiconductor substrate.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 1, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja, Manoocher Mansouri Aliabadi
  • Patent number: 8674401
    Abstract: This invention comprises photodiodes, optionally organized in the form of an array, including p+ deep diffused regions or p+ and n+ deep diffused regions. More specifically, the invention permits one to fabricate thin 4 inch and 6 inch wafer using the physical support provided by a n+ deep diffused layer and/or p+ deep diffused layer. Consequently, the present invention delivers high device performances, such as low crosstalk, low radiation damage, high speed, low leakage dark current, and high speed, using a thin active layer.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: March 18, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8665454
    Abstract: The specification discloses a pulsed time-of-flight laser range finding system used to obtain vehicle classification information. The sensor determines a distance range to portions of a vehicle traveling within a sensing zone of the sensor. A scanning mechanism made of a four facet cube, having reflective surfaces, is used to collimate and direct the laser toward traveling vehicles. A processing system processes the respective distance range data and angle range data for determining the three-dimensional shape of the vehicle.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 4, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Keith Fowler, Nan-Ming Lai
  • Patent number: 8519503
    Abstract: The present specification discloses front-side contact back-side illuminated (FSC-BSL) photodiode array having improved characteristics such as high speed of each photodiode, uniformity of the bias voltage applied to different photodiode, low bias voltage, reduced resistance of each photodiode, and an associated reduction in noise. The photodiode array is made of photodiodes with front metallic cathode pads, front metallic anode pad, back metallic cathode pads, n+ doped regions and a p+ doped region. The front metallic cathode pads physically contact the n+ doped regions and the front metallic anode pad physically contacts the p+ doped region. The back metallic cathode pads physically contact the n+ doped region.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: August 27, 2013
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja