Abstract: A light module for a projection device may include: at least one light source designed to emit partly polarization radiation; and a first polarization beam splitter, which is arranged in the beam path of the radiation emitted by the at least one light source, wherein the polarization beam splitter is designed to provide radiation of a first polarization at a first output and radiation of a second polarization at a second output. The light module includes a first beam cube arranged in the beam path of the radiation, a first to fourth LCD panels; a second dichroic beam splitter arranged between a first output of the first polarization beam splitter and a first input of the beam cube.
Abstract: An optical element is provided for beam shaping for radiation emitted by a radiation-emitting semiconductor chip. The optical element includes a radiation entrance face and a boundary surface different from the radiation entrance face with a first region and a second region. The first and second regions are arranged and embodied such that a first radiation portion of radiation entering the optical element through the radiation entrance face is reflected in the first region and after reflection in the first region is deflected in the second region towards a plane defined by the radiation entrance face.
Type:
Application
Filed:
September 26, 2013
Publication date:
September 10, 2015
Applicant:
OSRAM GMBH
Inventors:
Ales Markytan, Christian Gärtner, Horst Varga, Jan Marfeld, Janick Ihringer, Manfred Scheubeck, Roland Schulz, Alexander Linkov
Abstract: An arrangement with a multiplicity of optical semiconductor elements is disclosed. The semiconductor elements are respectively clamped against a semiconductor element carrier by way of a spring element. Additionally lying against the spring element is an optical element assigned to a respective semiconductor element, the spring element in this case being configured in such a way that it defines a fixed distance between the semiconductor element and the optical element.
Abstract: A buck converter for operating at least one LED. In this case, the buck inductor comprises a first buck inductor and a second buck inductor, wherein a charge pump is coupled between the coupling point of the two buck inductors and a supply connection of a control apparatus which is used for actuating a buck switch.
Abstract: A retrofit lamp includes at least one series circuit having a multiplicity of LEDs having a circuit arrangement. The at least one series circuit including is coupled between a first rectifier output connection and a second rectifier output connection. A breakdown apparatus is coupled between a third connection terminal and a fourth connection terminal. The breakdown apparatus may have the following properties: up to a first threshold value of the voltage drop across said breakdown apparatus during operation, the breakdown apparatus is nonconducting. If the first threshold value is exceeded, the breakdown apparatus becomes conducting. The breakdown apparatus remains conducting as long as current is supplied to it which is above a second threshold value. As soon as the current falls below the second threshold value, the breakdown apparatus becomes nonconducting again. In the conducting state, the breakdown apparatus has a forward voltage which is below a third threshold value.
Abstract: A bushing for a high-pressure discharge lamp, which is suitable for connecting an electrode in the interior of a ceramic discharge vessel to a supply lead in a gastight manner on the exterior of the discharge vessel, wherein the bushing is an electrically conductive ceramic composite consisting of a mixture of LaB6 and at least one second material from the group Al2O3, Dy2Al5O12, AlN, AlON and Dy2O3 is disclosed.
Type:
Grant
Filed:
October 19, 2010
Date of Patent:
September 1, 2015
Assignee:
OSRAM GmbH
Inventors:
Andreas Kloss, Wolfgang Poeppel, Klaus Stockwald, Steffen Walter
Abstract: A circuit configuration for operating at least one LED, comprising: an input with a first input terminal (E1) and a second input terminal (E2) for coupling to a DC voltage supply (UG); an output having a first output terminal (A1) and a second output terminal (A2) for providing an output current (IA) to the at least one LED; a micromirror arrangement (12) comprising a plurality of micromirrors; a first control device (16) configured for providing, at the output thereof, a first control signal (Sa) for the micromirror arrangement (12), the first control signal (Sa) being synchronized to a first clock frequency (fc11); a switching regulator (10), the input thereof being coupled to the first input terminal (E1) and the second input terminal (E2), and the output thereof being coupled to the first output terminal (A1) and the second output terminal (A2), the switching regulator (10) comprising a switch (S1); and a second control device (18) configured for providing, at the output thereof, a second control signal (
Abstract: A method for actuating a discharge lamp (LP), wherein in order to ignite the lamp a resonant circuit (L, C1) is brought into resonance or near resonance by the action of alternating current and as a result adjustment to give a predetermined amperage is performed by varying the frequency of the alternating current. For this purpose a measuring device transmits measured values of the amperage to means for controlling the frequency, and these means establish the frequency in dependence on the measured values. Before the ignition voltage is applied the electrodes of the lamp are pre-heated by the action on the resonant circuit of alternating current of a different frequency than when the lamp is ignited.
Abstract: A light source unit comprising: a pump light source (1) for an emission of pump light (2), a phosphor element (3) for a conversion of said pump light (2) into converted light (4), an optical system (6) for transmitting at least a part of said converted light (4) for further use, wherein at least a part of said pump light (2) is coupled into said optical system (6) and transmitted by said optical system (6) to said phosphor element (3) for said conversion.
Abstract: A lighting device has a carrier plate having a reflective assembly surface on which a plurality of light emitting semiconductor chips spaced apart from each other is arranged. A translucent or transparent emission plate is arranged downstream of the light emitting semiconductor chips in the emission direction and has a light decoupling surface facing away from the light emitting semiconductor chips. The emission plate has a plurality of recesses which are each arranged after at least one semiconductor chip. Each of the recesses has a diffusor material and/or a wavelength conversion material on the inner surface facing the semiconductor chips, and spaced apart from the light emitting semiconductor chips.
Abstract: The invention concerns a light source unit of tunable spectral properties, having a pump light source and a phosphor element for a conversion of pump light into converted light intended for illuminating a target, wherein the phosphor element has at least two phosphor element sections interacting differently with pump light, and wherein the light source unit further comprises a deflecting unit, such as a zoom lens or a variable diffraction grating, for deflecting the pump light so as to vary a distribution of pump light incident onto the phosphor element with respect to the different phosphor element sections, in order to vary spectral properties of the combined converted light beam emanating from the light source unit.
Abstract: A method for driving an LED connected to a power switch is provided. The method includes: determining a duty cycle of a pulse sequence for controlling the power switch according to a present current and a predetermined operating current of the LED; generating the pulse sequence according to the duty cycle and according to at least one of a randomized period sequence and a randomized pulse position sequence; and controlling switching operation of the power switch by the pulse sequence, so as to drive the LED. An apparatus for driving a light emitting diode, an apparatus for dimming a light emitting diode and illumination systems are also provided.
Abstract: A high-pressure discharge lamp having an ignition aid, mounted in an outer bulb, wherein the discharge vessel comprises two ends having seals in which electrodes are mounted and wherein a frame having a clip wire retains the discharge vessel in the outer bulb. The clip wire is bent toward the seal of the opposite pole electrode until the bent part formed thereby acts as an ignition aid.
Type:
Grant
Filed:
July 26, 2010
Date of Patent:
August 18, 2015
Assignee:
OSRAM GmbH
Inventors:
Thomas Brauner, Johannes Buttstaedt, Sascha Piltz
Abstract: A lighting module includes a strip-shaped carrier. At least one light source, and at least one electrical contact element that can be contacted at the edge, are present on the strip-shaped carrier. The at least one light source may be a semiconductor lighting element. The at least one electrical contact element is designed as a material volume element.
Abstract: A dimmable LED driver adapted to be operated with a dimmer that is configured to generate a predetermined conductive angle, wherein the dimmable LED driver comprises: a rectifier configured to convert an alternating current output by the dimmer to a direct current, a buck PFC block configured to adjust an output voltage of the direct current so as to obtain a stable output voltage, a second buck DC/DC block configured to realize output of a constant current after the stable output voltage is realized, a dimming block configured to, after realizing output of the constant current, accomplish a dimming function jointly with the second buck DC/DC block, and an MCU configured to control the buck PFC block, the second buck DC/DC block and the dimming block.
Type:
Grant
Filed:
May 3, 2012
Date of Patent:
August 18, 2015
Assignee:
OSRAM GmbH
Inventors:
Luca Bordin, Shaoping Chen, Yuli Chen, Shijun Nie, Wei Tan
Abstract: This invention relates to a phosphor assembly with a phosphor element for converting pump light into converted light, and an optical system for transmitting converted light and/or pump light. Therein, a liquid immersion material is provided in a gap between the phosphor element and the optical system, wherein an excess of immersion material enables a continuous exchange of the material in the gap and thus provides a cooling.