Patents Assigned to OSRAM Opto Semiconductors GmbH
  • Patent number: 10808893
    Abstract: An optoelectronic semiconductor light source includes a semiconductor chip configured to emit primary radiation, a Bragg mirror, and a luminescence conversion element configured to convert at least part of the primary radiation into secondary radiation having a longer wavelength, wherein the Bragg mirror is arranged between the semiconductor chip and the luminescence conversion element, the Bragg mirror is reflective for the secondary radiation and transmissive for the primary radiation, the Bragg mirror includes reflector layers of at least three different materials with different refractive indices, the Bragg mirror includes at least two different kinds of layer pairs, each kind of layer pairs being made up of reflective layers of two different materials, and the different kinds of layer pairs having different Brewster angles for p-polarized radiation.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: October 20, 2020
    Assignees: OSRAM Opto Semiconductors GmbH, The Research Foundation For State University of New York
    Inventors: Alan Lenef, David Klotzkin, Xin Wen
  • Patent number: 10804333
    Abstract: A display, a circuit arrangement for a display and a method of operating a display are disclosed. In an embodiment a display includes a plurality of pixels, each pixel of the plurality of pixels includes a given number of light emitters, a current control element for each light emitter, the current control element configured to control an electric current through the light emitter and at least one digital circuit element for each light emitter, the at least one digital circuit element configured to provide at least one data value to the current control element and the at least one data value being indicative of the current through the light emitter.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 13, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Alireza Safaee
  • Patent number: 10804332
    Abstract: A display, a circuit arrangement for a display and a method of operating a display are disclosed. In an embodiment a display includes a voltage supply and a plurality of pixels. Each pixel includes a given number of light emitters, the light emitters being arranged in parallel electric lines with a light emitter per electric line, wherein the voltage supply is adapted to provide an electric voltage to each of the parallel electric lines. Each electric line comprises a current control element, wherein the current control element of an electric line is configured to control an electric current flowing through the light emitter arranged in the electric line.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 13, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Anant Aggarwal, Alireza Safaee
  • Patent number: 10777617
    Abstract: A display, a circuit arrangement for a display and a method of operating a circuit arrangement of a display are disclosed. In an embodiment a display includes a plurality of light emitters arranged in a plurality of rows and columns, each row including an electric line and each column including an electric line, a voltage supply for providing a first voltage level to the electric lines of the rows and a second voltage level to the electric lines of the columns and a light emitter arranged in a first row and a first column and interconnecting the electric line of the first row and the electric line of the first column, wherein the electric line of the first column includes a current source, the current source being adapted to be switched on and off and to provide an electric current to drive the light emitter.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: September 15, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alireza Safaee, Marcel Severin
  • Publication number: 20200279978
    Abstract: The invention relates to an optoelectronic component (100) having a semiconductor chip (2) for generating a primary radiation in the blue spectral range, a conversion element (4) which is arranged in the beam path of the semiconductor chip and is designed to generate a secondary radiation from the primary radiation, wherein the conversion element (4) comprises at least one first phosphor (9) and a second phosphor (10), wherein the first phosphor (9) is Sr(Sr1?xCax)Si2Al2N6:Eu2+ and/or (Sr1?yCay)[LiAl3N4]:Eu2+, where 0?x?1 and 0?y?1, wherein a total radiation (G) exiting from the component (100) is white mixed light.
    Type: Application
    Filed: November 25, 2016
    Publication date: September 3, 2020
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Philipp PUST
  • Patent number: 10763400
    Abstract: Semiconductor structures having insulators coatings and methods of fabricating semiconductor structures having insulators coatings are described. In an example, a method of coating a semiconductor structure involves adding a silicon-containing silica precursor species to a solution of nanocrystals. The method also involves, subsequently, forming a silica-based insulator layer on the nanocrystals from a reaction involving the silicon-containing silica precursor species. The method also involves adding additional amounts of the silicon-containing silica precursor species after initial forming of the silica-based insulator layer while continuing to form the silica-based insulator layer to finally encapsulate each of the nanocrystals.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 1, 2020
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Juanita N. Kurtin, Weiwen Zhao
  • Patent number: 10746875
    Abstract: A sensor system and a method for operating a sensor system are disclosed. In an one embodiment, the sensor system includes a light source configured to emit laser radiation and an optical element configured to image the laser radiation to at least one image point at a fixed distance in an optical far field of the sensor system. A detector is configured to detect a proportion of the laser radiation reflected back at at least one object illuminated by the laser radiation. A pin hole is located in front of the detector, a diameter of the pin hole corresponds to a size of the image point within a factor of 2.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: August 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Rolf Weber
  • Patent number: 10741723
    Abstract: A component with an geometrically adapted contact structure and a method for producing such a component are disclosed. In an embodiment a component includes a contact structure including a contiguous contact layer having a plurality of openings and being assigned to a first electrical polarity of the component and a plurality of individual contacts at least in part having different vertical heights, wherein the contacts extend in the openings throughout the contiguous contact layer, wherein the contacts are laterally spaced from each other and assigned to a second electrical polarity of the component, and wherein the contacts are arranged with respect to their different heights and their positions such that a height distribution of the contacts is adapted to a predetermined geometrically non-planar contour profile.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: August 11, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Alexander F. Pfeuffer
  • Patent number: 10742786
    Abstract: A mobile device with a side-looking biometric sensor, a sensor and a method for sensing a biometric function of a user holding a mobile device a disclosed. In an embodiment, a mobile device has a generally flat rectangular shape with a relatively large front and rear surfaces and relatively small upper side, lower side, left side and right side surfaces, wherein the mobile device includes a sensor configured for capturing biometric data of a user holding the mobile device. The sensor includes a light source configured for emitting light towards a hand of the user and a photodetector configured for receiving light emitted from the light source and reflected back from the hand, wherein the sensor is a side-looking sensor.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 11, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Christoph Goeltner
  • Patent number: 10738238
    Abstract: Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 11, 2020
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Sonja Tragl, Stefan Lange
  • Patent number: 10731797
    Abstract: A filament includes a multiplicity of light-emitting semiconductor chips, wherein the semiconductor chips are arranged on a carrier, the semiconductor chips being electrically contacted, a scattering structure is configured to scatter light of the light-emitting semiconductor chips, the scattering structure is formed by structuring a surface, a converter covers the light-emitting semiconductor chips, and the structuring of the surface is formed on a surface of the converter.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 4, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schlereth, Elena Rachkova, Michael Bestele, Ivar Tangring
  • Patent number: 10727379
    Abstract: The invention relates to a method for producing a conversion element for an optoelectronic component comprising the steps of: A) Producing a first layer, for that purpose: A1) Providing a polysiloxane precursor material, which is liquid, A2) Mixing a phosphor to the polysiloxane precursor material, wherein the phosphor is suitable for conversion of radiation, A3) Curing the arrangement produced under step A2) to produce a first layer having a phosphor mixed in a cured polysiloxane material, which comprises a three-dimensional crosslinking network based primarily on T-units, where the ratio of T-units to all units is greater than 80%, B) Producing a phosphor-free second layer, for that purpose: B1) Providing the polysiloxane precursor material, which is liquid, B2) Mixing a filler to the polysiloxane precursor material, wherein the filler is in a cured and powdered form, wherein the filler has a refractive index, which is equal to the refractive index of the cured polysiloxane material, B3) Curing the arrangem
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: July 28, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alan Piquette, Adam Scotch, Maxim N. Tchoul, Gertrud Kraeuter
  • Patent number: 10711191
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 14, 2020
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 10686295
    Abstract: A laser component includes an edge-emitting first laser chip with an upper side, a lower side, an end side and a side surface, wherein an emission region is arranged on the end side, the side surface is oriented perpendicularly to the upper side and to the end side, a first metallization is arranged on the upper side, a step by which a part adjacent to the upper side of the side surface is set back, is formed on the side surface, a passivation layer is arranged in the set-back part of the side surface, the laser chip is arranged on a carrier, the side surface faces toward a surface of the carrier, and a first solder contact arranged on the surface of the carrier electrically conductively connects to the first metallization.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: June 16, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jens Mueller, Markus Horn
  • Publication number: 20200185576
    Abstract: A method of producing an optoelectronic lighting device includes forming a volume emitter such that it is at least partly transmissive to generated electromagnetic radiation, forming a concavely formed, optically transparent frame element including a curable, flowable material including phosphor particles at a side region of the volume emitter, wherein forming a conversion layer that converts the electromagnetic radiation into a second wavelength range is carried out by a sedimentation process of phosphor particles, and the conversion layer is formed within an optically transparent frame element in a manner adjoining an optically active region, forming a reflection element on the optically transparent frame element, and forming a conversion element that converts the electromagnetic radiation into a second wavelength range, wherein the conversion element is formed in a manner overlapping at least a second surface of the volume emitter and frame element.
    Type: Application
    Filed: June 30, 2017
    Publication date: June 11, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventor: Ivar Tangring
  • Patent number: 10673207
    Abstract: The invention relates to, inter alia, a light-emitting semiconductor component comprising the following: —a first mirror (102, 202, 302, 402, 502), —a first conductive layer (103, 203, 303, 403, 503), —a light-emitting layer sequence (104, 204, 304, 404, 504) on a first conductive layer face facing away from the first mirror, and—a second conductive layer (105, 205, 305, 405, 505) on a light-emitting layer sequence face facing away from the first conductive layer, wherein—the first mirror, the first conductive layer, the light-emitting layer sequence, and the second conductive layer are based on a III-nitride compound semiconductor material, —the first mirror is electrically conductive, and—the first mirror is a periodic sequence of homoepitaxial materials with varying refractive indices.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: June 2, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Armin Dadgar, André Strittmatter, Christoph Berger
  • Patent number: 10662310
    Abstract: An optoelectronic component includes a semiconductor chip that is able to emit radiation having a wavelength of 400 nm to 490 nm, a conversion element including a reactive polysiloxane matrix material, a wavelength converting phosphor and filler nanoparticles, wherein the filler nanoparticles have a diameter of smaller than 15 nm and modify the refractive index and yield a mixture when added to the reactive polysiloxane matrix material.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: May 26, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Maxim N. Tchoul, Thomas Dreeben, Adam Scotch, Alan Piquette, Gertrud Kräuter, Darshan Kundaliya
  • Patent number: 10665747
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier, arranging at least one optoelectronic semiconductor chip at a top side of the carrier, applying a phosphor layer at the at least one semiconductor chip, forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip, and removing the carrier, wherein the phosphor layer is applied before forming the shaped body.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 26, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 10665760
    Abstract: A method for producing at least one optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment, the method includes providing a semiconductor layer sequence comprising a first semiconductor material configured to emit a first radiation and applying a conversion element at least partially on the semiconductor layer sequence via a cold method, wherein the conversion element comprises a second semiconductor material, and wherein the second semiconductor material is configured to convert the first radiation into a second radiation.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: May 26, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Britta Goeoetz, Alexander Behres, Darshan Kundaliya
  • Publication number: 20200135980
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment a method includes attaching a plurality of optoelectronic semiconductor chips on predetermined locations of an intermediate film, providing a cavity film with a plurality of separated openings, attaching the cavity film to the intermediate film such that each optoelectronic semiconductor chip is associated with a respective opening, wherein the cavity film is thicker than the optoelectronic semiconductor chips such that the cavity film exceeds the optoelectronic semiconductor chips in a direction away from the intermediate film, filling a casting material in each of the openings such that the optoelectronic semiconductor chips are casted with the casting material and removing the intermediate film.
    Type: Application
    Filed: July 6, 2017
    Publication date: April 30, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Choo Kean LIM, Choon Keat OR, Choon Kim LIM, Ai Cheng CHAN