Patents Assigned to Osram Sylvania Inc.
  • Patent number: 10094527
    Abstract: A projection headlamp (12) has a reflector (28) reflecting light emitted from a light engine (20); a projector lens (30) projecting reflected light from the reflector (28); and a shutter (22) disposed between light engine (20) and projector lens (30), the shutter (22) having an upper edge (44) defining a cut-off to generate a low beam pattern by obscuring a portion of the projector lens (30) from the reflected light and to selectively emit the reflected light through the projector lens (30) in a low-beam light distribution pattern. The shutter (22) further includes a partially light-transmissive shutter bump (56) extending above the upper edge (44) which attenuates light emitted from the projector lens (30) in a predefined area of the low-beam pattern. Light intensity at the 0.86D, 3.5L NHTSA test point (112) is attenuated to below maximum photometric intensity (12,000 candela), avoiding glare.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: October 9, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Adam Bushre
  • Patent number: 10097265
    Abstract: Techniques are disclosed for position-based actions using light-based communication (LCom). LCom signals can be used to encode or otherwise provide data which in turn can be used to help determine the position of a device receiving those LCom signals. Therefore, LCom can be used to facilitate various actions based on, for example, the position of an LCom receiver determined using data received via the LCom signals. There are numerous use cases for position-based actions using LCom, such as security applications, check-in applications, payments based on location, permissions, and access to information that can all be tied to a location. Actions may include temporarily disabling or enabling the LCom receiver hardware or software (such as disabling device cameras in high security areas), providing another security layer as a result of knowing the device position, and using the LCom receiver position as a part of a larger process.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 9, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Anant Aggarwal, Christian Breuer, Barry Stout
  • Publication number: 20180284953
    Abstract: Techniques are disclosed for controlling a remotely programmable light fixture using a mobile computing device in communication with the light fixture via a network. The device is configured to receive an image of an environment that includes the light fixture. Using the received image, the device is configured to generate a graphical user interface (GUI) based on the image. The GUI is configured to define an area of the image for selecting the light fixture. The defined area is associated with the light fixture and is configured to select the light fixture in response to a user input. The GUI is further configured to receive a selection of a light setting for the selected light fixture and transmit an adjustment of the light setting to the selected light fixture via the network.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Charles Brunault, Alan Sarkisian
  • Publication number: 20180285650
    Abstract: Techniques are disclosed for detecting changes in occupancy as well as the number of occupants within an area. Detection of one or more occupants entering or leaving the area may be accomplished using a sensor having a quantity of pixels. The pixels may be configured to receive thermal energy emitted from one or more objects present in the area, including from one or more occupants. In response to receiving the emitted thermal energy, the sensor may be configured to create thermal images of the area. These thermal images may include a plurality of thermal intensity values associated with one or more pixels of the sensor. Two or more thermal images can be compared to identify a change in thermal intensity values. A change in the occupancy of the area may be determined by based on the identified change in thermal intensity values.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Sajin George, Anant Aggarwal, Yang Li, Christian Breuer
  • Publication number: 20180288839
    Abstract: A constant output current LED driver is disclosed. The driver is capable of operating with a wide range of input direct current (DC) voltage, and is configured with a full bridge inverter, an auxiliary circuit, and a voltage current converter. The full bridge inverter and auxiliary circuit collectively operate to provide a phase shift controller for the LED driver system. The LED driver operates under zero voltage switching (ZVS) for all switches in the LED driver circuit for all of the input voltage levels and for all of the output voltage levels. By maintaining ZVS in all conditions, the system can operate at very high frequency and be compact yet still achieve high power density. The resulting topology is applicable for a wide range of constant output current LED drivers. Switchable loads other than LEDs can also be driven.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventor: Alireza Safaee
  • Publication number: 20180274750
    Abstract: Metalenses and technologies incorporating the same are disclosed. In some embodiments, the metalenses are in the form of a hybrid multiregion collimating metalens that includes a first region and a second region, wherein the hybrid multiregion collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain subwavelength spaced nanostructures, such that the first region functions as a subwavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating. Lighting devices including such metalenses are also disclosed.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 27, 2018
    Applicants: Osram Sylvania Inc., President and Fellows of Harvard College
    Inventors: Steve Byrnes, Francesco Aieta, Federico Capasso, Alan Lenef
  • Patent number: 10079223
    Abstract: A conductive pathway mounted on an electrically insulating sheet having an upper face and an opposed lower face, said sheet having a plurality of pairs of apertures; a plurality of electrically conductive clips, each clip being separated spatially from an adjacent said clip; each electrically conductive clip comprising a first body portion and first and second depending legs defining a sheet-receiving recess therebetween, said first body portion being disposed in contacting relation with said upper face of said sheet and said legs being disposed in contacting relation with said lower face of said sheet; each leg of one of said electrically conductive clips extending through one of said apertures of a pair of said apertures from said upper face to said lower face; and a plurality of electrical components each mounted in conductive relationship to two adjacent said conductive clips and bridging said insulating sheet.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: September 18, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Richard Speer, Kenneth Grossman
  • Patent number: 10075234
    Abstract: Techniques are disclosed for emitting position information from luminaires. Luminaire position information may be emitted via a light-based communication (LCom) signal that comprises data including the position information. The data may include relative and/or absolute position information for the luminaire and may indicate the physical location of the luminaire. Relative position information for the luminaire may include coordinates relative to a point of origin within the environment. Absolute position information for the luminaire may include global coordinates for the luminaire. In some cases, the absolute position information for a luminaire may be calculated using position information for the luminaire relative to a point of origin and the absolute position of the point of origin. The data may also include an environment identifier, which may indicate a map to use for the interpretation of position information for the luminaire. The techniques can be used for both stationary and mobile luminaires.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: September 11, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Christian Breuer, Anant Aggarwal, Bernhard Siessegger
  • Publication number: 20180252389
    Abstract: Optical components for lighting devices and lighting devices including such components are described. In some embodiments the optical components are in the form of a lens that alter the distribution of light produced by a lighting fixture. In some embodiments, the lenses are in the form of a downlight to wallwash lens which, when placed in a downlight fixture, convert the light distribution to that of a wallwash fixture, e.g., causing the downlight to produce an off-axis light distribution, without changing the fixture. The lens includes a body with a light source facing side and an opposite room facing side having two optically active regions, each including structures that redirect a portion of light received through the light source facing side and incident thereon. The first region includes structures that redirect, via refraction, and the second region includes structures that redirect, in part via total internal reflection.
    Type: Application
    Filed: February 28, 2018
    Publication date: September 6, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Bruce Radl, Zhuo Wang, Yvetta Pols Sandhu
  • Publication number: 20180255616
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 6, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Publication number: 20180254835
    Abstract: Techniques are disclosed for programming a luminaire position for light-based communication (LCom) luminaires within an array of luminaires using position information provided by passing mobile computing devices. This position information can be received as, for example, as a specific coordinate (e.g., x-y coordinates of a grid-based map) or as movement data of the mobile computing device relative to an initial known reference location. The disclosed techniques can be used, for example, to reduce the time, labor, and expense associated with programming and re-programming a luminaire with a luminaire position, and to increase the flexibility of navigation system installations. In some cases, the disclosed techniques can be used, for example, to improve the precision of a luminaire position programmed into a newly installed luminaire.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 6, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Christian Breuer, Carsten Vogt, Anant Aggarwal, Barry Stout
  • Patent number: 10069572
    Abstract: Methods and systems are described for sampling an LCom message and accurately decoding the entire LCom message using a light receiver (e.g., digital camera) of a typical mobile computing device, such as a smartphone, tablet, or other mobile computing device. In one embodiment, a curvature method is disclosed to determine LCom signal bit values from a curvature value of a running average calculation of light sensor data. In another embodiment, a signal reconstruction method is disclosed to determine LCom signal bit values from a comparison of modeled data buffers to light sensor data.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 4, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Christian Breuer, Barry Stout, Anant Aggarwal
  • Patent number: 10066795
    Abstract: Flexible light engines capable of being cut, and methods thereof, are provided. A cuttable flexible light engine includes a flexible strip and strings of solid state light sources coupled in parallel. A voltage balancer establishes a desired current flow through the strings of solid state light sources when the flexible strip is cut to a desired length, and may be part of a connector placed where the strip is cut. The strings may be provided in a first set of strings coupled in parallel between a first conductive path and an intermediate conductive path and a second set of strings coupled in parallel between the intermediated conductive path and a second conductive path. A cuttable flexible light engine may also include test points positioned within the strings.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: September 4, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Ming Li, Robert Harrison, Keng Chen, Arnulf Rupp
  • Patent number: 10066801
    Abstract: A headlamp reflector 12, which accepts a conventional lamp capsule 10 having a sealing gasket 64, has a neck 2 defining a bore 40 and socket 50 to receive and retain lamp capsule 10 with capsule latching structure 52. Reflector neck 2 has a gasket seating surface 47 adjacent to which one or more recessed channels 43 are formed which define air passageways 70 that communicate between inner reflector cavity 19 and neck entrance region 46, allowing air passage past gasket 64 with capsule 10 retained in socket 50, while still allowing gasket 64 to position capsule 10 in reflector bore 40. Gasket seating surface 47 may be located displaced axially from capsule latching structure 52. Embodiments of reflector 12 accommodate a variety of popular, commercially available replaceable lamp capsules 10.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 4, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Lawrence Rice, Elizabeth Czech, Thomas Tessnow
  • Publication number: 20180239965
    Abstract: Techniques are disclosed for locating an occupant within an area. The system includes a first sensor including a first plurality of pixels for receiving a thermal energy input from the occupant within a first field of view (FOV) and a second sensor including a second plurality of pixels for receiving the input within a second FOV. A first distance from the occupant to the first sensor is determined based on the input received by at least one pixel of the first plurality of pixels and a first sensor location from an origin. A second distance from the occupant to the second sensor is also determined based on the input received by at least one pixel of the second plurality of pixels and a second sensor location relative to the origin. A coordinate position for the occupant relative to the origin is determined based on the determined first and second distances.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Anant Aggarwal, Yang Li, Sajin George, Christian Breuer
  • Publication number: 20180238518
    Abstract: A reflector assembly for a solid-state luminaire is disclosed. The disclosed reflector assembly may be configured, in accordance with some embodiments, to be disposed over a given printed circuit board (PCB) of a host luminaire such that emissions of emitters populated over that PCB are reflected out of the luminaire via the reflector assembly. In some embodiments, the reflector assembly may be formed from one or more reflective members, which may be generally bar-shaped or cup-shaped, or other example configurations. In some other embodiments, the reflector assembly may be formed from a bulk body having one or more reflective cavities formed therein. The particular configuration of a given reflective member or reflective cavity, as the case may be, of the reflector assembly, as well as the particular arrangement thereof for a host luminaire, may be customized as desired for a given target application or end-use.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Qiong Huang, Michael Quilici, Seung Cheo Ryu
  • Patent number: 10057710
    Abstract: Techniques are disclosed for augmenting global positioning system (GPS)-based navigation via light-based communication (LCom). In accordance with some embodiments, a light-sensing device, such as a camera or an ambient light sensor configured as described herein, may be used to detect an LCom signal transmitted by a local LCom-enabled solid-state luminaire. The LCom signal may include data about the location of the transmitting luminaire, and in some cases that location data may be used, for example, in computing the amount of time that it would take to navigate indoors to the luminaire's location. In some instances, GPS data also may be considered to calculate the total trip duration for an entire trip, including time spent indoors and outdoors. In some other cases, the location data and, if available, GPS data may be used, for example, in computing an automotive navigation route.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 21, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Anant Aggarwal, Bernhard Siessegger, Christian Breuer, Barry Stout
  • Patent number: 10056018
    Abstract: Lighting methods and systems to enhance the browsing behaviors of shoppers in a manner intended to be primarily subconscious include illumination of a targeted area, such as a typical retail display, with a tunable spectrum lamp that slowly cycles through different illumination spectra such that color rendering of illuminated target is deliberately varied for subtle arousal of the visual senses. The illumination spectra, and the rates at which spectral conditions are changed, are both chosen as such that multi-colored objects in the targeted area change in appearance in a barely noticeable way, such that shoppers may find their visual attention redirected, seemingly at random, to a wider variety of products on display. Color spectrum changes also may be controlled in coordination with predefined packaging colors to create quasi-animation effects.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 21, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Joseph Laski, Charles Brunault, Seung Cheol Ryu, Rebecca Schmidt
  • Publication number: 20180217229
    Abstract: A system and method for determining vehicle position uses light based communication (LBC) signals and a received signal strength indicator (RSSI) to determine the vehicle position. Each vehicle includes a LBC system having an array of transmitting light emitting diodes (LEDs) and an array of receiver photodiodes for transmitting and receiving pulsed light binary messages. Each LBC system has a controller coupled to the transmitter diodes and receiver diodes. The controller includes a vehicle communication module that may be executed by a processor to determine the distance. The processor models a first distance between a first transmitting LBC system and a first receiving LBC system, then models a second distance between a second transmitting LBC system and the first receiving LBC system, and then determines the distance between the first vehicle and the second vehicle using trilateration of the first distance and the second distance.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 2, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Vimlesh Shukla, Jeremy Spaulding, Mervyn Anthony
  • Publication number: 20180219634
    Abstract: A system and method for determining vehicle position uses light based communication (LBC) signals and a time-of-flight (TOF) pulse. Each vehicle includes a LBC system having light emitting diodes (LEDs) and receiver photodiodes capable of sending and receiving pulsed light binary messages. The LBC system may also include a TOF transceiver for sending and receiving TOF pulses, or the transmitter and receiver diodes may be used to send and receive TOF pulses. Each LBC system has a controller coupled to the transmitter diodes and receiver diodes (and the TOF transceiver when present). The controller includes a processor configured to determine the distance between vehicles. Optical characteristics are used to discern relative angle, a header is used to determine relative orientation, and the time-of-flight is used to determine distance, which together may be used by the processor to determine the relative location between transmitting vehicle and the receiving vehicle.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 2, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Joseph Laski, Vimlesh Shukla, Jeremy Spaulding