Abstract: Techniques are disclosed for light-based communication using a passive light-reflective device having specially coded reflective or printed optics. The optics can be mounted to an object and configured to reflect light such that a receiver is able to receive the reflected light. The optics are further configured to alternatively display a number of different patterns that change as the receiver moves with respect to the optics, thus causing the receiver to receive an apparent stream of modulated light, which represents coded information that can be decoded into meaningful information. The optics can be mounted to a traffic control or other roadside device. As a vehicle approaches and passes the traffic control device, light reflects off of the optics in a series of patterns. This reflected light can be received by the vehicle and processed to relay the information to the operator or on-board vehicle system.
Abstract: Techniques are provided for bi-directional communication between a power supply and one or more light engines (and/or other lighting system components) via the existing power lines so that no additional communication wires are needed. In particular, the power supply can transmit information by modulating its output (voltage or current) and the light engine (or other lighting componentry, such as a sensor) can communicate back by modulating how much power it draws from the power supply. Any suitable type of modulation scheme can be used, and a master-slave arrangement can be used to control the bi-directional communication if so desired, so as to avoid multiple devices communicating over the power line communication channel at the same time. Other embodiments allow a multiple simultaneous communications over the power line communication channel.
Abstract: Techniques and architecture are disclosed for a lighting system for contained environments, such as elevators or other such environments. The lighting system can include one or more luminaires and/or one or more display devices that include tunable output controlled to automatically change the ambient lighting and/or presentable content (e.g., imagery, video, audio) based on one or more conditions related to the contained environment. Conditions that can be used in controlling the lighting system output within the contained environment can include, for example, the position or operation of the contained environment, the control of the contained environment, the occupancy within the contained environment, the time of day at the location of the contained environment, and the calendar date at the location of the contained environment. In some cases, the lighting system may constitute the general illumination within the contained environment, but may be supplemental as well.
Type:
Application
Filed:
December 12, 2014
Publication date:
June 16, 2016
Applicant:
OSRAM SYLVANIA INC.
Inventors:
Mervyn Anthony, Jeremy Spaulding, Charles Brunault
Abstract: A retrofit-style lamp is disclosed. The retrofit-style lamp includes a plurality of light sources, and a one-dimensional linear batwing lens. The one-dimensional linear batwing lens beam shapes light emitted by at least two light sources of the plurality of light sources. The retrofit-style lamp also includes a housing including the plurality of light sources, and attached to the one-dimensional linear batwing lens. The combination of housing and lens is then itself fitted with endcaps, including electrical connectors, for placement within a fixture, such as within an existing conventional fluorescent tube fixture located within a storage structure, for example a refrigeration case. Alternatively, the plurality of light sources, the one-dimensional linear batwing lens, and the housing may be formed, along with a power supply, as a standalone retrofit fixture for use in enclosed storage structures, such as refrigeration cases, where the retrofit fixture replaces a conventional fluorescent fixture.
Abstract: Fault protection circuitry and methodologies for isolated power supply topologies are provided. The circuitry is configured to shut down the primary side of the supply in case of a system fault, while keeping the secondary side circuit running, thus offering flexibility for restarting upon clearing of the fault. A lighting driver thus configured with safety isolation and a secondary side microcontroller or other control circuitry, is configured so that the circuit can shut down the primary side in response to system fault detection, while keeping the secondary microcontroller running from an energy storage circuit (e.g., bulk capacitor in parallel with load). The driver operation can resume with a controlled timing if the fault is cleared. The number of restarts may be limited, and/or a timer may be used to space restarts. The driver may be used with loads other than lighting-based loads, as will be appreciated.
Abstract: Disclosed are composites that include a matrix and at least one filler. The matrix may be a core-shell particle assembly that includes an inorganic core and a polymeric shell. The refractive index of the core may be adjusted by adjusting the volume fraction of the core, such that the refractive index of the core-shell particle assembly matches or substantially matches the refractive index of the filler. Optically transparent composites that exhibit properties of the filler may therefore be achieved. Methods of making such composites and light sources including such composites are also disclosed.
Abstract: A flexible circuit board is described that includes a flexible substrate, at least one ridge defining a flexion zone and a component mounting area. The flexion zone acting to dissipate at least a portion of a force applied to the substrate, so as to insulate the component mounting area from the force. Light sources using such flexible circuit boards and methods for making such circuit boards are also described.
Type:
Grant
Filed:
September 27, 2013
Date of Patent:
May 10, 2016
Assignee:
OSRAM SYLVANIA INC
Inventors:
Richard Speer, Adam Scotch, Jeffery Serre, Sridharan Venk
Abstract: Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
Type:
Application
Filed:
November 3, 2014
Publication date:
May 5, 2016
Applicant:
OSRAM SYLVANIA INC.
Inventors:
Michael Quilici, Seung Cheol Ryu, Lori Brock
Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In accordance with some embodiments, the disclosed luminaire includes a housing, for example, of hemi-cylindrical, oblate hemi-cylindrical, oblong elliptical, or polyhedral shape. The disclosed luminaire also includes a plurality of solid-state light sources arranged over its housing, in accordance with some embodiments. The one or more solid-state emitters of a given solid-state light source may be addressable individually and/or in one or more groupings, in some embodiments. As such, the solid-state light sources can be electronically controlled individually and/or in conjunction with one another, providing for highly adjustable light emissions from the host luminaire, in accordance with some embodiments. One or more heat sinks may be mounted on the housing to assist with heat dissipation for the solid-state light sources.
Type:
Application
Filed:
November 3, 2014
Publication date:
May 5, 2016
Applicant:
OSRAM SYLVANIA INC.
Inventors:
Michael Quilici, Seung Cheol Ryu, Lori Brock
Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
Type:
Application
Filed:
November 3, 2014
Publication date:
May 5, 2016
Applicant:
OSRAM SYLVANIA INC.
Inventors:
Michael Quilici, Seung Cheol Ryu, Lori Brock
Abstract: A luminaire having a plurality of power sockets arranged over its housing is disclosed. In some embodiments, the luminaire includes a driver operatively coupled with all (or some sub-set) of the power sockets and configured to control the light output of a modular solid-state light source operatively interfaced therewith. In some such embodiments, the luminaire also includes a power-line communication (PLC) module configured to output a PLC signal utilized by the driver in controlling the modular light source's output. In some other embodiments, the modular light source includes the driver, which may utilize a PLC signal, a command signal received from a remote source, or both, in controlling light output. In some cases, the modular solid-state light sources may allow the luminaire to produce a target light beam distribution utilizing a minimal or otherwise reduced quantity of such light sources, reducing cost and difficulty of installation and commissioning.
Type:
Grant
Filed:
May 29, 2015
Date of Patent:
May 3, 2016
Assignee:
OSRAM SYLVANIA Inc.
Inventors:
Joseph Allen Olsen, Michael Quilici, Seung Cheol Ryu
Abstract: A method of manufacturing a curved component of a lamp or luminaire comprising forming a sheet segment into a curved portion after forming an electrically conductive trace on the sheet segment and after placing a plurality of LEDs on the sheet segment is described. A luminaire provided by the method of manufacturing is also described herein.
Type:
Application
Filed:
September 18, 2015
Publication date:
April 21, 2016
Applicant:
OSRAM SYLVANIA Inc.
Inventors:
Rodrigo Pereyra, Ken Grossman, Richard Speer
Abstract: Techniques are disclosed for using an infrared (IR) sensor to sense flame and/or activity within an environment of a building, such as a home or office. One example embodiment provides a multi-condition sensing device that includes an IR sensor for sensing both human occupancy and fire within a given environment. Another example embodiment provides a multi-condition sensing device that includes a plurality of sensors. A first of the sensors includes an IR sensor that is adapted to sense IR radiation within a given environment. A second of the sensors is adapted to sense a second environmental condition (different than IR radiation) within the given environment. Another example embodiment provides a standalone modular sensor block with a standard communication interface to a building management system. The sensor block may act as a combo-sensor as well as an active fire detector and alarm.
Type:
Application
Filed:
October 21, 2014
Publication date:
April 21, 2016
Applicant:
OSRAM SYLVANIA INC.
Inventors:
Anant Aggarwal, Christian Breuer, Christopher Fowles
Abstract: Thin film wavelength converters and methods for making the same are disclosed. In some embodiments, the thin film converters include a first thin film layer of first wavelength conversion material, a conductive layer, and a second thin film layer of a second wavelength conversion material. In one embodiment, a photoresist mask is applied to the conductive layer to form a pattern of by which the second wavelength conversion material may be applied by electrophoretic deposition to the exposed regions of the surface of the conductive layer.