Patents Assigned to Ossia, Inc.
  • Publication number: 20200119593
    Abstract: The disclosed technology relates to antenna configurations for wireless power transmission and supplemental visual signals. In some implementations, the disclosed technology includes a wireless power transmitter with boards that have multiple antennas physically coupled to the board. In some implementations, the antennas boards are arranged in a polygonal configuration (e.g., star shape). Additionally, in some implementations, the antennas can have different polarization configurations.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 16, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Iranpour Khormaei, Fady El-Rukby, Alireza Saghati, Luis Perez, Prithvi Shylendra, Robert Smith
  • Publication number: 20200091968
    Abstract: A method of operating a transceiver system includes receiving, from a client power receiver, a signal at a plurality of antenna elements of an antenna array. The method also includes determining, by at least one of the antenna array and a processor of the transceiver system, and based at least in part on a fixed geometry of the plurality of antenna elements, a value of at least one waveform characteristic of the received signal. The method further includes computing, by the processor and based on the determined value of the at least one waveform characteristic, a transmission path of the signal from the client power receiver to each antenna element. The method also includes, assigning, by the processor and based on the computed transmission path, a location of the client power receiver in a wireless data transmission and power delivery environment.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 19, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Publication number: 20200091773
    Abstract: Systems and methods are described for receiving wireless power and providing wired power. In some embodiments, a wirelessly chargeable battery apparatus comprises a housing and one or more antennas situated within the housing. The antennas are configured to receive wireless radio frequency (RF) power from a wireless charging system. One or more electronic circuit boards (PCBs) situated within the housing are included, and the one or more electronic circuit boards are configured to convert the received wireless RF power to direct current (DC) power. The apparatus also comprises one or more batteries configured to store the DC power and a port configured to couple with a cable external to the housing and to provide stored DC power from the one or more batteries to the cable.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 19, 2020
    Applicant: Ossia Inc.
    Inventors: Benjamin Renneberg, Dale Mayes, Fady El-Rukby, Hatem Zeine
  • Patent number: 10587155
    Abstract: Techniques are described herein for delivering retrodirective wireless radio frequency (RF) power to a client device in a wireless power delivery environment. More specifically, embodiments of the present disclosure describe techniques for delivering directed wireless RF power to a client device in a wireless power delivery environment via multiple wireless power signals over multiple wireless power delivery paths. The client device includes one or more RF client transceivers that collectively have a radiation and reception pattern in a three-dimensional space proximate to the client device. The techniques identify the wireless power delivery paths over which wireless power signals can be delivered and deliver the wireless power in a manner that matches the client radiation and reception pattern in the three-dimensional space proximate to the client device.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: March 10, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Alireza Pourghorban Saghati
  • Patent number: 10587154
    Abstract: Techniques are described herein for utilizing power requirements of a device in order to schedule wireless power delivery in wireless power delivery environments. In some embodiments, the techniques can alternatively or additionally employ advanced usage based power models to schedule wireless power delivery in wireless power delivery environments. For embodiments where device usage information is utilized, various means of collecting and analyzing the usage data may be employed. Furthermore, in some embodiments, some of the usage data may be ignored in order to ensure that the usage models for the device are not polluted with abnormal or detrimental data.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 10, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes, Fady El-Rukby, Douglas Williams, Prithvi Shylendra
  • Patent number: 10574081
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 25, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Patent number: 10566845
    Abstract: Techniques for automated clock synchronization and control are discussed herein. For example, the techniques can include monitoring of transmissions for ‘known’ events and identifying timing or frequencies of such events. Deviations in the timing or frequencies of the events from expected times or frequencies may indicate that wireless power transmission system and receiver clocks are not synchronized. The deviations can be used to synchronize the clock for optimum wireless power transfer. Techniques are also described for enhancing clock control mechanisms to provide additional means for managing the adjustments of the clocks, as well as for enabling wireless power transmission systems to mimic client clock offsets for effective synchronization of events (e.g., beacon signals).
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 18, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10566846
    Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: February 18, 2020
    Assignee: OSSIA INC.
    Inventor: Hatem Zeine
  • Patent number: 10566852
    Abstract: Techniques for establishing RF power connections with wireless power transmission systems in multi-wireless power transmission system environments are described herein. More specifically, the techniques describe a method for establishing a connection with an optimal wireless power transmission system when multiple wireless power transmission systems are within range.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 18, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10559983
    Abstract: The technology described herein relate to polarization adaptive wireless power transmission systems. In an implementation, a wireless power transmission system is described. The wireless power transmission system includes a plurality of antennas and control circuitry operatively coupled to the plurality of antennas. The control circuitry is configured to determine polarization information of a beacon signal received at multiple antennas of the plurality of antennas of the antenna array. The beacon signal is transmitted by a client device in a multipath wireless power delivery environment. The control circuitry is further configured to dynamically configure polarization information associated with each of the multiple antennas of the plurality of antennas of the antenna array to match the polarization information determined at respective antennas of the multiple antennas.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: February 11, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Alireza Pourghorban Saghati, Seyed Ali Malek Abadi
  • Patent number: 10559275
    Abstract: Techniques are described herein for inferring a status of a primary battery for an electronic device in a wireless power delivery environment. In some embodiments, the status of the primary battery can be inferred, without any feedback regarding a status of the primary battery, based on a wireless charging profile of the primary battery and power usage characteristics that are monitored. In some embodiments, the wireless power transmission system utilizes the information inferred about a particular wireless device's primary battery to control or allocate how much wireless power is allocated to a particular wireless power receiver client embedded and/or otherwise associated with the wireless device.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 11, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10559982
    Abstract: Various techniques are described herein for efficiently transmitting and receiving wireless power and/or data signals. In one example, a transmitter includes multiple antennas, a dielectric material in proximity to the multiple antennas, and multiple scattering elements embedded in the dielectric material. One or more of the multiple scattering elements are configured to be excited by one or more signals emitted by the multiple antennas.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: February 11, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Douglas Wayne Williams
  • Patent number: 10559971
    Abstract: Embodiments of the present disclosure describe systems, methods, apparatuses for wirelessly charging handheld and consumer electronics in wireless power delivery environments. In some embodiments, techniques are described for retrofitting wireless power receivers into existing devices e.g., through wirelessly powered battery apparatuses. For example, the apparatuses discussed herein allow any device that accepts standard form factor batteries to be transformed into a wirelessly powered device. The wirelessly rechargeable battery apparatuses can be applied to any battery form factor including custom or semi-custom battery form factors for mobile phones, laptops, tablet computers, etc. Advantageously, among other benefits, the apparatuses discussed herein overcome the product integration challenges discussed above.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 11, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi, Alireza Saghati, Anas Alfarra, Chris Neugebauer
  • Publication number: 20200044489
    Abstract: Techniques are described herein for determining the distance from, to or between radiating objects in a multipath environment. For example, embodiments of the present disclosure describe techniques for determining the distance between an antenna array system (or wireless charger) and a wireless power receiver in a multipath wireless power delivery environment. Calibration techniques are disclosed that account for and/or otherwise quantify the multipath effects of the wireless power delivery environment. In some embodiment, the quantified multipath effects modify the Friis transmission equation, thereby facilitating the distance determination in multipath environments.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Douglas Wayne Williams, Anas Alfarra
  • Publication number: 20200036233
    Abstract: Embodiments of a conformal wave selector and methods of application thereof are disclosed. A conformal wave selector comprises a first plurality of conductors arranged substantially in parallel in a first direction and in a first region and a second plurality of conductors arranged substantially in parallel in second direction that is normal to the first direction and in a second region that is different than the first region. The conductors are sized, spaced, and directionally arranged such that signals of particular wavelengths and unknown polarization are reflected and other signals are allowed to penetrate the conformal wave selector.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Applicant: Ossia Inc.
    Inventors: Anas M. A. Alfarra, Hatem I. Zeine, Caner Guclu
  • Publication number: 20200026673
    Abstract: Systems and methods for improvement in bus communications with daisy-chained connected devices are described herein. In some embodiments, a bus communication system comprises a master chain controller, a first peripheral device, and a second peripheral device. A first communication bus couples a master interface port of the master chain controller to a slave interface port of the first peripheral device, and a second communication bus couples a master interface port of the first peripheral device to a slave interface port of the second peripheral device. The first communication device is configured to receive a communication packet via the first communication bus and to send a copy of the communication packet to the second peripheral device during transmission of the communication packet to the first peripheral device. The first communication device is also configured to send an idle state signal to the master chain controller.
    Type: Application
    Filed: July 29, 2019
    Publication date: January 23, 2020
    Applicant: Ossia Inc.
    Inventors: Valdis Janis Riekstins, Joshua B. Hardy, Ahmad Reza Abdolhosseini Moghaddam
  • Publication number: 20200021142
    Abstract: A transmitter assembly is useful in optimizing in the delivery of wireless power to a plurality of receivers. Each receiver measures its own battery need for power and transmits that measurement as a request to the transmitter. The transmitter is configured to normalize and compare battery need requests. The transmitter then allocates pulses of wireless power among the requesting receivers according to their battery need.
    Type: Application
    Filed: June 3, 2019
    Publication date: January 16, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Thomas H. Wilson, K. Kenneth Clark
  • Publication number: 20200014251
    Abstract: Various embodiments of the present technology relate generally to wireless power systems. More specifically, some embodiments relate to the use of time reversal techniques utilizing time diversity (e.g., different multipath arrivals at the same antenna) to achieve coherency from the same transmission node. For example, instead of initiating outgoing transmissions (e.g., power signals) at the same time, various embodiments can initiate the outgoing signals from the various antennas in a staggered timing that is a reversal of the arrival times of an incoming signal. As a result of staggering the start of the outgoing signals, the signals will arrive at the destination at approximately the same time even though they have traveled different paths having different propagation delays.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Patent number: 10523301
    Abstract: A method and apparatus for focused communication is disclosed. The method includes a base transmitter array in communication with at least one client device at the same frequency. The base transmitter array provides a focused data communication to the client device.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: December 31, 2019
    Assignee: OSSIA INC.
    Inventor: Hatem I. Zeine
  • Patent number: 10523034
    Abstract: Embodiments of the present disclosure describe various techniques for integrating wireless power facilities or functionality into an existing object or device via embedded or deposited surface antennas. More specifically, the techniques described herein provide for the ability to embed and/or otherwise deposit spatially-arrayed adaptively-phased antennas on the surface of an existing object or device such that the antennas are exposed to air and/or otherwise lacking significant interference. In some embodiments, a wireless power control system is operatively coupled to the antennas to independently control phases of the phased of the antennas in a wireless power delivery environment.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: December 31, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Alireza Saghati