Patents Assigned to Ossia, Inc.
  • Patent number: 11735961
    Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: August 22, 2023
    Assignee: OSSIA INC.
    Inventor: Hatem Zeine
  • Patent number: 11728693
    Abstract: Described herein are embodiments of apparatuses and methods for optimizing pairing of a wireless power transmission system (WPTS) with a wireless power receiver client (WPRC) in a localized system. A current WPTS-WPRC pairing and at least one alternate WPTS-WPRC pairing are assessed and the WPTS-WPRC pairing is updated based on associated pairing quality metrics. In this way, a system of many WPTSs and WPRCs will approach an Epsilon equilibrium such that no WPRC would be significantly better served by being paired with a different WPTS.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: August 15, 2023
    Assignee: OSSIA INC.
    Inventors: Philip L. Swan, Hatem I. Zeine
  • Publication number: 20230238834
    Abstract: Circuits, systems and computer readable media transmission of wireless signals in response to incoming signals in a wireless signaling environment. Such a system may include at least one transceiver for receiving an incoming signal via an antenna array from a device in the wireless signaling environment. The system may also include a controller operably coupled to the transceiver. The controller may measure a phase of the incoming signal, and determine, based on the phase, a transmit phase configuration for one or more antennas of the antenna array. The system may include at least one phase-locked loop (PLL) operably coupled to the transceiver(s). The PLL(s) may feed signals to the antenna(s) of the antenna array based on the transmit phase configuration for transmission of a responsive signal to the device.
    Type: Application
    Filed: March 30, 2023
    Publication date: July 27, 2023
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Seyed Ali Malek Abadi, Alireza Pourghorban Saghati
  • Publication number: 20230216924
    Abstract: Support of coexistence of wireless transmission equipment in shared wireless medium environments is disclosed, which is applicable to various types of wireless transmission equipment. For instance, a wireless power transmission system (WPTS) delivers power to wireless power receiver clients via transmission of wireless power signals using one or more frequencies and/or channels within shared wireless medium environments in which other wireless equipment is operating, such as access points and stations in wireless local area networks (WLANs). The WPTS is configured to co-exist with the operations of the other wireless equipment within the shared wireless medium environment by adapting its transmission operations to utilize frequencies or channels that do not interfere with other equipment and/or implementing co-channel and shared channels operations under which access to channels is implemented using standardized WLAN protocols such as PHY and MAC protocols used for 802.11 (Wi-Fi™) networks.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 6, 2023
    Applicant: Ossia Inc.
    Inventors: Scott Elliott, Dale Mayes, Robert Giometti
  • Publication number: 20230198312
    Abstract: Systems, methods, computer readable media and vehicles that leverage multipath wireless transmissions operations within multipath signaling environment. A transceiver according to the present technology includes at least one antenna. The transceiver also includes a controller coupled to the at least one antenna. The controller identifies one or more least lossy paths over which a wireless signal was received via the at least one antenna. The controller also determines a time offset or a phase offset for the at least one antenna for transmission of a responsive wireless signal to the wireless device over the one or more least lossy paths using the at least one antenna.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 22, 2023
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi
  • Publication number: 20230187969
    Abstract: Dual-mode active/passive wireless power receiver clients, and associated systems, methods and computer readable media. A system includes means for determining whether or not a radio frequency (RF) field at an antenna meets an ambient threshold in a wireless power delivery environment. The system also includes means for receiving wireless power from a wireless power source in the wireless power delivery environment when the RF field meets or exceeds the ambient threshold. The system further includes means for harvesting ambient energy from the wireless power delivery environment when the RF field is below the ambient threshold.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 15, 2023
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 11677274
    Abstract: The embodiments described herein comprise a distributed wireless power transmission system including a plurality of wireless power transmission systems (WPTSs) coordinating transmissions to create a virtual WPTS. The plurality of WPTS coordinate amongst each other to compensate for local phase shift differences between respective clock sources so that transmissions from the WPTSs constructively interfere at a wireless power receiver client (WPRC).
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: June 13, 2023
    Assignee: OSSIA INC.
    Inventors: Hatem I. Zeine, Philip L. Swan
  • Patent number: 11670969
    Abstract: Various wireless power systems are described that are capable of changing a transmit frequency employed by antennae, or groups of antennae, of the wireless power system, e.g., adjusting a current transmit frequency to a new transmit frequency within an operable frequency range, or switching among different transmit frequencies to increase a transmission characteristic of the wireless power system.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: June 6, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Munir Zeine, Alireza Pourghorban Saghati
  • Patent number: 11656347
    Abstract: Various wireless power transmission systems are provided for sensing an environment, e.g., using a neural network. For instance, phase information corresponding to wireless power transmission is input into a neural network framework, and then, distance information representative of a distance from a wireless power transmitter to an object is obtained as output from the neural network framework. Based on the distance information, a power of a subsequent wireless power transmission can be modified, or an environment comprising the object can be mapped.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: May 23, 2023
    Assignee: Ossia Inc.
    Inventors: Ayman Hatem Zeine, Hatem Ibrahim Munir Zeine
  • Patent number: 11646605
    Abstract: Systems and methods are described for transmitting and receiving wireless power. In some embodiments, a wireless power transmission system comprises an antenna array comprising a plurality of antennas and a transceiver module configured to receive a plurality of beaconing signals via the antenna array from a wireless client during a beacon cycle. The system also comprises a controller configured to measure a phase of each of the plurality of beaconing signals and determine a transmit phase configuration for each of the antennas, and a transceiver module configured to send signals to the antenna array based on the transmit phase configuration for delivery of wireless power to the wireless client.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 9, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Seyed Ali Malek Abadi, Alireza Pourghorban Saghati
  • Patent number: 11638314
    Abstract: Embodiments of the present disclosure describe techniques for encoding beacon signals in wireless power delivery environments. More specifically, techniques are disclosed for encoding beacon signals to isolate client devices for wireless power delivery in wireless power delivery environments. The beacon signals can be encoded or modulated with a transmission code that is provided to selected clients in the wireless power delivery environment. In this manner, beacon signals from the select clients can be identified and the corresponding client devices isolated for wireless power delivery.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: April 25, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Prithvi Shylendra, Anas Alfarra
  • Publication number: 20230115392
    Abstract: Methods and apparatus are disclosed of a wireless power transmission system (WPTS) and wireless power receiver client (WPRC). The WPTS may directionally transmit wireless power to a first WPRC while concurrently directionally transmitting wireless data to at least a second WRPC. The WPTS and WPRC may reuse circuitry configured to transmit/receive wireless power to also transmit/receive wireless data.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: OSSIA INC.
    Inventors: Hatem I. Zeine, Robert Giometti
  • Patent number: 11626754
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 11, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 11626761
    Abstract: The technology described herein relates to wireless power receivers with reconfigurable (or adaptive) antenna configurations for improved wireless power transfer in multipath wireless power delivery environments. In an implementation, a wireless power receiver is described. The wireless power receiver includes one or more radio frequency (RF) antennas, power metering circuitry and control circuitry. The power metering circuitry is adapted to measure at least one characteristic of wireless power received from a wireless power transmission system in a multipath environment. The control circuitry is adapted to monitor the power metering circuitry to determine when the measure of the at least one characteristic of the wireless power fails to meet a preset threshold, and dynamically reconfigure an antenna configuration of the wireless power receiver when the at least one characteristic of the wireless power fails to meet the preset threshold.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 11, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Alireza Pourghorban Saghati
  • Patent number: 11621588
    Abstract: The disclosed technology relates to wireless communication and wireless power transmission. In some implementations, the disclosed technology is directed to an integrated circuit having a transmitter that transmits radio frequency (RF) based wireless power and receives signals for detecting the location of a client device. The disclosed technology is also directed to an integrated circuit for a client device that receives power from the transmitter and transmits beacon signals, which the transmitter can use to locate the client device.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: April 4, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams, Dale Mayes
  • Publication number: 20230095809
    Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 30, 2023
    Applicant: OSSIA INC.
    Inventor: Hatem Zeine
  • Patent number: 11616403
    Abstract: Systems and methods for leveraging multipath wireless transmissions for charging devices within multipath signaling environment. Techniques according to the present technology include determining a received signal strength of a radio frequency signal received via a plurality of paths at two or more antennas of a plurality of antennas of an antenna array. The techniques also include configuring parameters for transmission of a wireless power signal over one or more paths of the plurality of paths for which the received signal strength exceeds a threshold value. The techniques further include directing at least a portion of the plurality of antennas to transmit the wireless power signal over the one or more paths according to the parameters. Resulting signal transmissions may thus be directionally biased toward least lossy pathways between a wireless power transmitter and a device in need of receiving wireless power.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: March 28, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi
  • Publication number: 20230093479
    Abstract: Systems, methods, and apparatuses for receiving wireless power using a wireless power receiver client architecture are disclosed. A simplified wireless power receiver apparatus includes an energy storage device and a radio frequency (RF) transceiver including an antenna. Energy harvester circuitry is coupled to the energy storage device and the RF transceiver, and control circuitry is coupled to the energy storage device, the RF transceiver, and the energy harvester. The control circuitry causes the RF transceiver to: establish a connection with a wireless power transmitter (WPT), transmit a beacon signal to the WPT, and receive a wireless power signal from the WPT. The control circuitry causes the energy harvester to deliver at least a portion of energy of the wireless power signal to the energy storage device for storage therein. In some embodiments, a single antenna is utilized both for transmitting the beacon signal and for receiving the wireless power signal.
    Type: Application
    Filed: November 3, 2022
    Publication date: March 23, 2023
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Douglas Wayne Williams, James J. Wojcik
  • Publication number: 20230083641
    Abstract: The technology described herein relates to techniques for calibrating wireless power transmission systems for operation in multipath wireless power delivery environments. In an implementation, a method of calibrating a wireless power transmission system for operation in a multipath environment is disclosed. The method includes characterizing a receive path from a calibration antennae element to a first antennae element of a plurality of antennae elements of the wireless power transmission system, characterizing a transmit path from the first antennae element to the calibration antennae element, and comparing the transmit path to the receive path to determine a calibration value for the first antennae element in the multipath environment.
    Type: Application
    Filed: November 2, 2022
    Publication date: March 16, 2023
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes, Douglas Williams, Siamak Ebadi
  • Patent number: 11601504
    Abstract: Support of coexistence of wireless transmission equipment in shared wireless medium environments is disclosed, which is applicable to various types of wireless transmission equipment. For instance, a wireless power transmission system (WPTS) delivers power to wireless power receiver clients via transmission of wireless power signals using one or more frequencies and/or channels within shared wireless medium environments in which other wireless equipment is operating, such as access points and stations in wireless local area networks (WLANs). The WPTS is configured to co-exist with the operations of the other wireless equipment within the shared wireless medium environment by adapting its transmission operations to utilize frequencies or channels that do not interfere with other equipment and/or implementing co-channel and shared channels operations under which access to channels is implemented using standardized WLAN protocols such as PHY and MAC protocols used for 802.11 (Wi-Fi™) networks.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: March 7, 2023
    Assignee: Ossia Inc.
    Inventors: Scott Elliott, Dale Mayes, Robert Giometti