Abstract: A conformable body interface is fabricated using a data set representing a three-dimensional, soft tissue body surface. The conformable body interface includes a body scaffold that is divided into two or more longitudinal segments separated by axial joints. Optionally, the body scaffold is further divided into two or more circumferentially split segments separated by circumferential joints. The axial joints are circumferentially constrained by bands, tabs, or similar structures and the circumferential joints are longitudinally constrained by axial tethers or similar structures. In this way, the body interfaces can accommodate swelling and bending of the body surface.
Abstract: A conformable body interface is fabricated using a data set representing a three-dimensional, soft tissue body surface. The conformable body interface includes a body scaffold that is divided into two or more longitudinal segments separated by axial joints. Optionally, the body scaffold is further divided into two or more circumferentially split segments separated by circumferential joints. The axial joints are circumferentially constrained by elastic bands, tabs, or similar structures and the circumferential joints are longitudinally constrained by elastic axial tethers or similar structures. In this way, the body interfaces can accommodate swelling and bending of the body surface.
Abstract: A conformable body interface is fabricated using a data set representing a three-dimensional, soft tissue body surface. The conformable body interface includes a body scaffold that is divided into two or more longitudinal segments separated by axial joints. Optionally, the body scaffold is further divided into two or more circumferentially split segments separated by circumferential joints. The axial joints are circumferentially constrained by bands, tabs, or similar structures and the circumferential joints are longitudinally constrained by axial tethers or similar structures. In this way, the body interfaces can accommodate swelling and bending of the body surface.
Abstract: A conformable body interface is fabricated using a data set representing a three-dimensional, soft tissue body surface. The conformable body interface includes a body scaffold that is divided into two or more longitudinal segments separated by axial joints. Optionally, the body scaffold is further divided into two or more circumferentially split segments separated by circumferential joints. The axial joints are circumferentially constrained by elastic bands, tabs, or similar structures and the circumferential joints are longitudinally constrained by elastic axial tethers or similar structures. In this way, the body interfaces can accommodate swelling and bending of the body surface.
Abstract: A conformable body interface is fabricated using a data set representing a three-dimensional, soft tissue body surface. The conformable body interface includes a body scaffold that is divided into two or more longitudinal segments separated by axial joints. Optionally, the body scaffold is further divided into two or more circumferentially split segments separated by circumferential joints. The axial joints are circumferentially constrained by elastic bands, tabs, or similar structures and the circumferential joints are longitudinally constrained by elastic axial tethers or similar structures. In this way, the body interfaces can accommodate swelling and bending of the body surface.
Abstract: A conformable body interface includes a body scaffold comprising a three-dimensional lattice which can be removably placed over a three-dimensional soft-tissue surface, such as a knee, elbow, spine, ankle, wrist, hip, or neck. One or more sensors are located at one or more locations on the body scaffold, and the one or more locations are selected to position the sensor near a target region on the body surface when the body scaffold is placed over the three-dimensional body surface. Typically, the sensors are positioned near a body joint to detect motion of the body joint.