Patents Assigned to Osteonics Corp.
  • Patent number: 10405994
    Abstract: A surgical referencing guide includes a body having a contact surface and a first foot extending away from the body. The first foot includes a first reference surface having a first area defined by a standard deviation of a first dataset extracted from a database and being comprised of a plurality of first data points each corresponding to an individual bone within a population of bones and each corresponding to a location of a preselected point on the bone within a predetermined coordinate system.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 10, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Scott G. Logan, Gearoid Walsh
  • Patent number: 10405988
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 10, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Patent number: 10398559
    Abstract: A method of forming an implant having a porous tissue ingrowth structure and a bearing support structure. The method includes depositing a first layer of a metal powder onto a substrate, scanning a laser beam over the powder so as to sinter the metal powder at predetermined locations, depositing at least one layer of the metal powder onto the first layer and repeating the scanning of the laser beam.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 3, 2019
    Assignees: Howmedica Osteonics Corp., The University Of Liverpool
    Inventors: Eric Jones, Christopher J. Sutcliffe, Robin Stamp
  • Patent number: 10390972
    Abstract: Orthopedic trialing systems include a stem, an adaptor and a trial member. The stem may be a trial or implant stem. The trial member may be a cup or head. The adaptor is used to account for the difference in the coupling of the trial member and stem and an implant member and stem. The stem has a first coupling feature and a shaft portion adapted to be received in a canal of a bone of a patient. The adaptor has planar top and bottom surfaces and at least one aperture therethrough. The trial member has a second coupling feature, wherein one of the first and second coupling features of either the trial member or stem extends through the aperture of the adaptor and at least partially into the other of the first and second coupling features for coupling together the trial member, the adaptor and the stem.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: August 27, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Koustubh Rao
  • Patent number: 10388486
    Abstract: A high energy beam verification, calibration, and profiling system includes a conductive base plate, supports extending from the base plate, a plurality of conductors, a data logger electrically connected to the conductors, and a computer electrically connected to the data logger. Each conductor is supported by some of the supports such that each conductor is insulated from the conductive base plate. Each conductor has a profile intersecting with profiles of at least some of the other conductors to define a multidirectional and two-dimensional array of conductors. The data logger receives and records data associated with electrical charges flowing through the conductors. The computer is adapted to receive, manipulate, and display the data recorded by the data logger for comparison of beam characteristics at different locations across a high energy beam build area.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 20, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Lewis Mullen, Joseph Robinson
  • Patent number: 10376371
    Abstract: A knee prosthesis includes a femoral component, a tibial component, and a coupling component interconnecting the femoral component and the tibial component. The tibial component includes ball. The femoral component is configured to move relative to the tibial component. The coupling component defines an internal cavity including a first spherical end portion and a second spherical end portion. The internal cavity is dimensioned to receive the ball of the tibial component. The ball is repositioned between the first spherical end portion and the second spherical end portion of the internal cavity upon movement of the femoral component relative to the tibial component.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: August 13, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Carlos E. Collazo, Damon J. Servidio
  • Patent number: 10357255
    Abstract: A varus-valgus alignment instrument includes a body having a bone contact surface for contacting a distal femur and an opening extending through the body and bone contact surface. The opening is sized to receive an elongate shaft therein. An alignment member is moveably attached to the body and has first and second openings therethrough. The first and second openings are sized to receive the elongate shaft and are interchangeably positioned in alignment with the opening of the body.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: July 23, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Carlos E. Collazo
  • Patent number: 10342673
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: July 9, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti
  • Patent number: 10335285
    Abstract: Disclosed herein are orthopedic revision systems including a base member having a collar portion and at least one stabilization portion extending outwardly from the collar portion. The systems may further include a stem member having an attachment portion and a shaft portion, the stem member configured to be received at least partially through an opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft portion lies adjacent the at least one stabilizing portion. In a method of performing revision surgery with such orthopedic systems includes forming an opening in the collar of the base member for receipt of the stem member by removing an inner portion of the collar portion and inserting the stem member at least partially through the opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft member lies adjacent the at least one stabilizing portion.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 2, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: David Viscardi, Nicholas Olson, Jonathan You
  • Patent number: 10335171
    Abstract: A bone void filling prosthesis, which includes a body and a plurality of legs. The body includes an aperture extending therethrough. The plurality of legs are each connected to the body. Each of the plurality of legs includes at least one selectively removable portion for adjusting a length of each of the plurality of legs.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 2, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Carlos E. Collazo, Damon J. Servidio
  • Patent number: 10327916
    Abstract: Various embodiments of an impact absorbing pad are disclosed herein. Each pad is configured to protect a load bearing surface of an implant from damage when the implant is implanted. Each pad may have an attachment portion that allows the pad to be attached to the load bearing surface. An impactor tool may also be attached to the load bearing surface and utilized the drive a portion of the implant into a bone cavity. The pad may be removed by hand, removed with the tool, or implanted with the implant. Related systems and methods for using and making the pad are also disclosed.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: June 25, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Rahul Ramachandran, Dalyssa Hernandez
  • Patent number: 10321961
    Abstract: A method for avoiding impingement between an implanted prosthetic hip stem and acetabular cup uses at least one digital x-ray of a standing patient preferably including a lateral x-ray to determine a pelvic tilt angle of the patient. A hip stem is virtually implanted at an initial stem version angle into a virtual femur constructed from the digital x-ray. Data of at least one hip joint motion is obtained from at least one individual. A range of inclination and anteversion angles is calculated for a virtually implanted acetabular cup that avoids impingement with the virtually implanted hip stem. The calculated range of inclination or anteversion angles is based at least in part on the pelvic tilt angle of the patient, the initial hip stem version angle and the obtained joint motion data.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: June 18, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Thomas Francis McCarthy, Vincent Alipit
  • Patent number: 10314571
    Abstract: Systems for tissue repair are described where an elongate tissue repair device may be introduced into a single incision to access the damaged tissue. A suture delivery assembly may be sized for insertion through a single incision and positioned into proximity with a damaged or ruptured tissue region. A first portion of the damaged tissue region may be positioned within or along a channel defined along the suture delivery assembly and one or more lengths of suture may be secured to the first portion via the device. A second portion of the damaged tissue region may be similarly positioned within or along the channel and one or more additional lengths of suture may be secured to the second portion via the device. The first and second portions may then be approximated and secured to one another via the sutures to facilitate healing of the damaged tissue region.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: June 11, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: James Rohl, Shannon M. Rush, Sheriese Rush, Michel Yoon, James McCrea, Shuo-Hsiu Chang
  • Patent number: 10314599
    Abstract: Disclosed herein are systems and methods of patella arthroplasty. A navigated patella clamp used in an arthroplasty procedure includes first and second movable jaw members and an actuation member coupled to the first and second jaw members for moving the first and second jaw members along a plane toward and away from one another. The patella clamp further includes a tracker and adjustable stylus for positioning the clamp on a patient's patella below a desired resection plane. The adjustable stylus coupled to the clamp is used to check the position and orientation of the clamp with respect to the patella to ensure the correct amount of bone will be resected from the patella corresponding to the thickness of a patella component that will be implanted on the resected patella.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 11, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Emily Hampp, John R. Fossez, Michael C. Ferko
  • Patent number: 10299929
    Abstract: A bone void forming assembly includes a support member having a head portion and an elongate portion extending therefrom. A guide member is connected to the support member and has a guide body including a channel extending therethrough. The channel defines an axis offset and obliquely angled relative to an axis of the elongate portion. The assembly also includes reamer having a cutting head and a stop member. A bushing is slidably connected to the reamer between the stop member and cutting head and is slidably connectable to the guide body via the channel.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: May 28, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Carlos E. Collazo
  • Patent number: 10292833
    Abstract: An expandable implant includes a structural insert to provide a robust connection between an insertion instrument and the expandable implant. The structural insert can be made from a different material than the remainder of the implant to withstand compressive, tensile, shear, and torsional loads which may be present while inserting the implant into a patient. The structural insert may be formed as part of a bottom member of the implant or may be a separate element inserted into the implant body. The structural insert may provide a threaded connection to an insertion instrument. The expandable implant may include a bone graft port in fluid communication with a bone graft opening extending through the implant body.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 21, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Marcel Sicotte, Damien J. Shulock
  • Patent number: 10286102
    Abstract: Certain small molecule amino acid phosphate compounds such as phosphoserine and certain multivalent metal compounds such as calcium phosphate containing cements have been found to have improved properties and form an interpenetrating network in the presence of a polymer that contains either an electronegative carbonyl oxygen atom of the ester group or an electronegative nitrogen atom of the amine group as the bonding sites of the polymer surfaces to the available multivalent metal ions.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: May 14, 2019
    Assignee: Howmedica Osteonics Corp
    Inventors: Venkat R. Garigapati, Brian J. Hess, Cassandra L. Kimsey, Matthew E. Murphy
  • Patent number: 10285685
    Abstract: In one embodiment, the present invention include a method of securing tissue using a filamentary construct, the method including the steps of passing a length of filament through or around tissue; implanting a filamentary sleeve, formed of filament, into tissue; and passing at least a portion of the length of filament at least partially through the filamentary sleeve to form a one-way cleat. The present invention also provides for various devices, systems, assemblies, kits and methods of use, assembly and manufacture thereof.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 14, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Kyle Craig Pilgeram
  • Patent number: D851247
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 11, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Tatyana Kaverina, Tracy Rickels, Thies Wuestemann
  • Patent number: D851761
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 18, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Tatyana Kaverina, Tracy Rickels, Thies Wuestemann