Patents Assigned to Osteonics Corp.
  • Patent number: 11117195
    Abstract: A High Energy Beam Processing (HEBP) system provides feedback signal monitoring and feedback control for the improvement of process repeatability and three-dimensional (3D) printed part quality. Electrons deflected from a substrate in the processing area impinge on a surface of a sensor. The electrons result from the deflection of an electron beam from the substrate. Either one or both of an initial profile of an electron beam and an initial location of the electron beam relative to the substrate are determined based on a feedback electron signal corresponding to the impingement of the electrons on the surface of the sensor. With an appropriate profile and location of the electron beam, the build structure is fabricated on the substrate.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: September 14, 2021
    Assignees: Howmedica Osteonics Corp.
    Inventors: Christopher J. Sutcliffe, Eric Jones, Hay Wong
  • Patent number: 11109978
    Abstract: A radial head assembly is provided that includes a stem, a collar, a locking ring, and an articular member. The stem has a convex articular head on one end thereof. The locking ring has a ring wall, which has a ring opening. The ring wall has an angular outer surface and a slot configured to permit the ring wall to radially expand. The angular outer surface engages an angular portion of an interior surface of the collar. The articular member and the locking ring define an articular space within the collar. The articular space is configured to receive the convex articular head.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: September 7, 2021
    Assignee: HOWMEDICA OSTEONICS CORP.
    Inventors: Matthew Victor Kartholl, Brad Alan Parker, William Matthew Kuester, Jackson R. Heavener, Kevin Alika Farley
  • Patent number: 11103357
    Abstract: Reversed glenoid implants, and related kits and methods, are described that include an anchor member having a proximal head and a baseplate having a distal end with a first aperture sized to accept the proximal head of the anchor member. The proximal head is inserted along an un-threaded length thereof from the distal end into the first aperture, and the anchor member is restrained against axial translation with respect to the baseplate but is permitted to rotate with respect to the baseplate.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: August 31, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Shawn M. Gargac, Brian C. Hodorek, William Matthew Kuester, Austin Wyatt Mutchler
  • Patent number: 11090161
    Abstract: This surgical instrumentation assembly is for positioning a shoulder prosthesis, the shoulder prosthesis comprising a patient-specific shoulder implant adapted to fit onto a glenoid cavity of the scapula of a patient. The assembly comprises a patient-specific impacting device having an underside surface congruent with the glenoid cavity of the scapula of the patient, said underside surface being provided with protrusions adapted to perforate the cortical bone of the scapula upon impact of the impacting device against the scapula by a one-sided translation movement.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: August 17, 2021
    Assignee: HOWMEDICA OSTEONICS CORP.
    Inventor: Brian C. Hodorek
  • Patent number: 11083585
    Abstract: An orthopedic system that includes a first augment that has a body and a first biasing member projecting from the body. The body has a first and second face. The first and second faces are separated by a thickness of the augment. The system also includes a femoral prosthesis that has an articular side that defines condylar portions and a bone-facing side opposite the articular side. The bone facing side defines an augment opening that is sized to receive the augment therein. When the first augment is received within the augment opening, the first biasing member presses directly against the femoral prosthesis so as to retain the body within the augment opening.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 10, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventor: Damon J. Servidio
  • Patent number: 11083449
    Abstract: Described herein is a suture for connecting a human or animal tissue comprising a suture strand, wherein at least two protrusions are provided on the suture strand, the protrusions are provided spaced apart from each other along the suture strand. Also described herein is a soft anchor, the soft anchor having a proximal end and a distal end in an insertion direction. At the proximal end and the distal end the soft anchor includes respectively at least one opening for a suture. The proximal end and the distal end of the soft anchor are connected with at least one, in particular two, connecting portions. The soft anchor has a first state, in which it is adapted to be inserted into a bore in the insertion direction, and a second state, in which it is locked in a bore. In the first state, the distal end and the proximal end defines the extension of the soft anchor in insertion direction.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: August 10, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventor: Clinton Andrew Beck
  • Patent number: 11083597
    Abstract: A system for implanting an expandable interbody implant into an intervertebral space includes an elongated tool, the distal end of which is removably securable to the implant. The proximal end of the tool has an attachment interface for detachable securement to a plurality of different modules, each of which is adapted to effectuate a different function of the delivery system. The different functions include: grasping the implant delivery tool, providing an impaction surface for driving the advancement of the implant, supplying a graft material into the implant, and actuating the expansion of the implant. One of the modules may include a fluid delivery system for supplying hydraulic fluid to expand the implant. A fluid reservoir of the fluid delivery system may be oriented transverse to the cannula that delivers the fluid to the implant. A grafting block can be used to help pre-pack the implant with graft material.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: August 10, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Amir Ali Sharifi-Mehr, Oliver Buchert, M. Todd Miller
  • Publication number: 20210237149
    Abstract: A feedstock delivery system for injection molding includes a vessel unit that includes a vessel with an internal volume and an inlet for receipt of a feedstock. First and second dispensing units are alternatively connectable to the vessel unit and each include first and second ends, first and second valves, and a buffer chamber. The first end is connectable to the dispensing unit such that the buffer chamber is in communication with the internal volume of the vessel. The second end is connectable to an injection mold and defines an outlet of the feedstock delivery system. The outlet is in communication with the buffer chamber, and the buffer chamber is positioned between the first and second valves. The buffer chamber of the first dispensing unit defines a first chamber volume, and the buffer chamber of the second dispensing unit defines a second chamber volume greater than the first chamber volume.
    Type: Application
    Filed: January 21, 2021
    Publication date: August 5, 2021
    Applicant: Howmedica Osteonics Corp.
    Inventors: Benoit Julien, Alexei Mourski, Michael Ste-Marie
  • Patent number: 11076962
    Abstract: A stemless prosthetic shoulder joint may include a prosthetic humeral head and a stemless base. The stemless base may include a collar and an anchor extending from the collar intended to anchor the base into the proximal humerus. The anchor may include various features to enhance the fixation of the base, including hooks, threads, and/or expandable members that may be transitioned from a contracted insertion condition to an expanded implanted condition once the base is positioned in the bone. The anchor and/or collar may also include additional features to enhance fixation, such as geometries and surface features to enhance fixation to bone. The anchor may include a plurality of chisel slots to facilitate removal of bone during a revision surgery.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 3, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Philip T. Kemp, Andrew J. Nelson, Jan Heinsohn, Rajan Yadav, Koustubh Rao, Gennaro A. Barile, Ashish Mehta, Venkateswaran Perumal, David Viscardi
  • Patent number: 11076873
    Abstract: A humeral guide is provided that has a first portion or member configured to be positioned on a portion of a proximal humerus. The first portion or member can be configured to rest in a complementary manner on the portion of the proximal humerus. The humeral guide can be configured with apertures defining trajectories through bone, the pin trajectories being diverging in some case and in some cases being selected to enhanced support. A second portion or member and a third portion or member of the humeral guide are configured to be positioned on first and second lateral portions of the humerus distal to a location intended for resection, e.g., between an anatomical neck and a distal end of the humerus. The second and third portions or members or portions are configured to rest in a complementary manner on the first and second lateral portions of the humerus. The humeral guide can be configured to avoid soft tissue between a bone facing side and the humerus. The humeral guide can have a removeable jig portion.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: August 3, 2021
    Assignee: HOWMEDICA OSTEONICS CORP.
    Inventor: Yannick Morvan
  • Patent number: 11076865
    Abstract: In one embodiment, the present invention includes a method for securing tissue to bone, including drilling a bone hole into the bone; passing a filament through the tissue, the filament including a first end, a second end and a length therebetween, the second end having a loop; passing the first end of the filament through the loop of the filament; pulling on the first end of the filament such that the loop travels along the length of the filament and to the tissue; passing an anchor along the length of the filament, from the first end towards the loop and tissue; engaging the loop with a distal end of the anchor; positioning the distal end of the anchor, with the loop of the filament, into the bone hole; and securing the anchor in the bone.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: August 3, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Tracy Pat-Yen Ng, Kyle Craig Pilgeram, Lee Harris Cordova, Robert Eugene McLaughlin, II, Stuart Edward Fromm
  • Patent number: 11071633
    Abstract: An intervertebral implant may include an input for expanding at least two extendable support elements connected to a body at respective locations, such that the extendable support elements each apply a respective expansion force directed away from a surface of the body. Application of a single input force to the input may induce the extendable support elements to apply different amounts of expansion force. Alternatively or additionally, an intervertebral implant may include at least two portions connected together by a hinge for articulation about the hinge. In one aspect, the hinge may include at least two rigid links each pivotably connected to the two portions. In another aspect, a rigid link of the hinge may include a passageway for communicating a hydraulic fluid between the two portions. A locking system may be positionable into successive locked configurations by operation of a cam to prevent contraction of an extendable support element.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: July 27, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Amir Ali Sharifi-Mehr, Oliver Buchert, Ronald Litke, Thomas A. Alheidt
  • Patent number: 11065016
    Abstract: A system for preparing an ankle bone to receive an ankle prosthesis is provided. The system includes a patient specific cutting guide that has an anterior surface, a posterior surface, and at least one cutting feature extending through the guide from the anterior surface. The posterior surface comprising a first protrusion or other member that extends from a first end fixed to the posterior surface to a second end disposed away from the first end of the first protrusion. The posterior surface has a second protrusion or other member that extends from a first end fixed to the posterior surface to a second end disposed away from the first end of the second protrusion. The first and second protrusions are spaced apart and have a length such that when the patient specific cutting guide is coupled with first and second bone references, which can include bushings implantable in bones, a clearance gap is provided between the posterior surface and the ankle bone.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: July 20, 2021
    Assignee: HOWMEDICA OSTEONICS CORP.
    Inventors: Richard Garret Mauldin, Thomas Anthony Flanagan, Emmanuel Francois Marie Lizee
  • Patent number: 11065015
    Abstract: Disclosed herein are systems and methods of patella arthroplasty. A navigated patella clamp used in an arthroplasty procedure includes first and second movable jaw members and an actuation member coupled to the first and second jaw members for moving the first and second jaw members along a plane toward and away from one another. The patella clamp further includes a tracker and adjustable stylus for positioning the clamp on a patient's patella below a desired resection plane. The adjustable stylus coupled to the clamp is used to check the position and orientation of the clamp with respect to the patella to ensure the correct amount of bone will be resected from the patella corresponding to the thickness of a patella component that will be implanted on the resected patella.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 20, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Emily Hampp, John R. Fossez, Michael C. Ferko
  • Patent number: 11065124
    Abstract: A femoral assembly includes a femoral component that includes condylar portions and an anterior flange portion. The condylar portions and anterior flange portion together define an outer side of the femoral component for articulating with a tibial prosthesis and an inner bone facing side opposite the outer side. The inner bone facing side defines five intersecting component inner surfaces that each extend from a lateral side of the femoral component to a medial side thereof. A femoral augment includes condylar portions and an anterior flange portion. The condylar portions and anterior flange portion together define an outer side of the femoral augment comprised of five intersecting augment outer surfaces and an inner side comprising no more than three intersecting augment inner surfaces. The augment outer surfaces correspond to the component inner surfaces of the femoral component. The augment inner surfaces correspond to resected surfaces of a distal femur.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: July 20, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Damon J. Servidio, Anthony K. Hedley
  • Patent number: 11058544
    Abstract: A method of implanting a prosthetic stemless shoulder implant may include making an incision into a patient's shoulder area of a patient and passing a cutting instrument through a rotator cuff interval of the patient. A central portion of the native humeral head may be resected and removed so that a central void remains. The same or another cutting instrument may be inserted through the rotator cuff interval and into the central void. Medial and lateral portions of the native humeral head adjacent the central void may be resected and removed. A base of a prosthesis may be implanted into a proximal portion of the humerus after passing the base through the rotator cuff interval, and two humeral head portions may be inserted through the rotator cuff interval and coupled to the base and to one another.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Joaquin Sanchez-Sotelo, David Viscardi
  • Patent number: 11058547
    Abstract: Expandable spinal interbody implants include a body and at least one extendable support element connected thereto. Such an implant may include a second extendable support element and a tool selectively positionable with respect to the implant so as to independently or simultaneously expand both extendable support elements. In another example, such an implant may include, at each of a first and second location, a respective movable member and a respective locking element. The at least one extendable support element may be actuatable to expand so as to induce movement of at least one of the movable members away from the body. The locking elements at each of the first and second locations may be selectively lockable such that, when locked, the locking element restrains movement of the associated movable member at that location away from the body without restraining movement of the other movable member away from the body.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Amir Ali Sharifi-Mehr, Oliver Buchert
  • Publication number: 20210204985
    Abstract: Systems, devices, and methods for treating the spine are disclosed herein. Medical devices can be positioned along a subject's spine to treat various conditions and diseases. The medical device can include an actuator assembly and a clamp assembly. The actuator assembly can be positioned at an interspinous space between a superior spinous process and an inferior spinous process. The actuator assembly can be used to reconfigure the clamp assembly such that the clamp assembly clamps onto the superior and inferior spinous processes.
    Type: Application
    Filed: February 23, 2021
    Publication date: July 8, 2021
    Applicant: Howmedica Osteonics Corp.
    Inventors: Andy Wonyong Choi, Kim Thien Nguyen, Robert Leslie Richards
  • Patent number: 11045209
    Abstract: A dynamic trialing method generally allows a surgeon to perform a preliminary bone resection on the distal femur according to a curved or planar resection profile. With the curved resection profile, the distal-posterior femoral condyles may act as a femoral trial component after the preliminary bone resection. This may eliminate the need for a separate femoral trial component, reducing the cost and complexity of surgery. With the planar resection profile, shims or skid-like inserts that correlate to the distal-posterior condyles of the final insert may be attached to the distal femur after the preliminary bone resection to facilitate intraoperative trialing. The method and related components may also provide the ability of a surgeon to perform iterative intraoperative kinematic analysis and gap balancing, providing the surgeon the ability to perform necessary ligament and/or other soft tissue releases and fine tune the final implant positions based on data acquired during the surgery.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 29, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Stuart L. Axelson, Jr., Emily Hampp, John R. Fossez
  • Patent number: 11033395
    Abstract: An insert is advanced and at least partially secured into a prosthetic device configured for use in a joint. The prosthetic device includes a shell with a cavity defined by an interior surface. The interior surface includes first and second portions that share an edge and that abut an edge of the interior surface. The first portion includes a partially spherical surface while the second portion is a partially cylindrical shape. A maximum radius of the second portion is larger than a radius of the first portion. A center defining the maximum radius of the second portion is offset from a center defining the radius of the first portion. The geometry of the interior surface allows the insert to be advanced into the shell in a single orientation. When advanced sufficiently into the shell, the insert is rotated to constrain the insert within the shell.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 15, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventor: Alvin Perez