Patents Assigned to Osteonics Corporation
  • Publication number: 20240050155
    Abstract: A method for planning an arthroplasty procedure on a patient bone. The method may include accessing generic bone data stored in a memory of a computer, using the computer to generate modified bone data by modifying the generic bone data according to medical imaging data of the patient bone, using the computer to derive a location of non-bone tissue data relative to the modified bone data, and superimposing implant data and the modified bone data in defining a resection of an arthroplasty target region of the patient bone.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 15, 2024
    Applicant: HOWMEDICA OSTEONICS CORPORATION
    Inventors: Elena I. Pavlovskaia, Oleg Mishin, Boris E. Shpungin, Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Patent number: 11847755
    Abstract: A computer-implemented method of preoperatively planning a surgical procedure on a knee of a patient including determining femoral condyle vectors and tibial plateau vectors based on image data of the knee, the femoral condyle vectors and the tibial plateau vectors corresponding to motion vectors of the femoral condyles and the tibial plateau as they move relative to each other. The method may also include modifying a bone model representative of at least one of the femur and the tibia into a modified bone model based on the femoral condyle vectors and the tibial plateau vectors. And the method may further include determining coordinate locations for a resection of the modified bone model.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: December 19, 2023
    Assignee: HOWMEDICA OSTEONICS CORPORATION
    Inventors: Ilwhan Park, Charlie W. Chi, Venkata Surya Sarva, Irene Min Choi, Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin
  • Patent number: 11819282
    Abstract: A method for planning an arthroplasty procedure on a patient bone. The method may include accessing generic bone data stored in a memory of a computer, using the computer to generate modified bone data by modifying the generic bone data according to medical imaging data of the patient bone, using the computer to derive a location of non-bone tissue data relative to the modified bone data, and superimposing implant data and the modified bone data in defining a resection of an arthroplasty target region of the patient bone.
    Type: Grant
    Filed: May 1, 2021
    Date of Patent: November 21, 2023
    Assignee: HOWMEDICA OSTEONICS CORPORATION
    Inventors: Elena I. Pavlovskaia, Oleg Mishin, Boris E. Shpungin, Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Patent number: 11344370
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: May 31, 2022
    Assignee: HOWMEDICA OSTEONICS CORPORATION
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Patent number: 11298142
    Abstract: Disclosed herein is an arthroplasty jig for use in an arthroplasty procedure on a bone of a patient that forms a ball and socket joint. The arthroplasty jig may include a customized mating region and a resection guide. The customized mating region and the resection guide are referenced to each other such that, when the customized mating region matingly engages a surface area of a proximal femur, the resection guide will be aligned to guide a resectioning of the proximal femur along a preoperatively planned resection plane.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 12, 2022
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Michael Koehle, Lorenzo R. Deveza
  • Patent number: 11129678
    Abstract: Disclosed herein is a method of defining a mating surface in a first side of an arthroplasty jig. The mating surface is configured to matingly receive and contact a corresponding patient surface including at least one of a bone surface and a cartilage surface. The first side is oriented towards the patient surface when the mating surface matingly receives and contacts the patient surface. The method may include: a) identifying a contour line associated with the patient surface as represented in a medical image; b) evaluating via an algorithm the adequacy of the contour line for defining a portion of the mating surface associated with the contour line; c) modifying the contour line if the contour line is deemed inadequate; and d) employing the modified contour line to define the portion of the mating surface associated with the contour line.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: September 28, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventor: Ilwhan Park
  • Publication number: 20210275227
    Abstract: A computer-implemented method of preoperatively planning a surgical procedure on a knee of a patient including determining femoral condyle vectors and tibial plateau vectors based on image data of the knee, the femoral condyle vectors and the tibial plateau vectors corresponding to motion vectors of the femoral condyles and the tibial plateau as they move relative to each other. The method may also include modifying a bone model representative of at least one of the femur and the tibia into a modified bone model based on the femoral condyle vectors and the tibial plateau vectors. And the method may further include determining coordinate locations for a resection of the modified bone model.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 9, 2021
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Venkata Surya Sarva, Irene Min Choi, Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin
  • Publication number: 20210251664
    Abstract: A method for planning an arthroplasty procedure on a patient bone. The method may include accessing generic bone data stored in a memory of a computer, using the computer to generate modified bone data by modifying the generic bone data according to medical imaging data of the patient bone, using the computer to derive a location of non-bone tissue data relative to the modified bone data, and superimposing implant data and the modified bone data in defining a resection of an arthroplasty target region of the patient bone.
    Type: Application
    Filed: May 1, 2021
    Publication date: August 19, 2021
    Applicant: Howmedica Osteonics Corporation
    Inventors: Elena I. Pavlovskaia, Oleg Mishin, Boris E. Shpungin, Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Patent number: 11045208
    Abstract: Arthroplasty jigs and related methods are disclosed. Some of the arthroplasty jigs may comprise a jig body that is configured to align with a surface of a bone, and a positioning component. Certain of the methods may comprise providing such an arthroplasty jig, and aligning the jig body with a surface of a bone so that the positioning component provides at least one of a visible, audible, or tactile indication that such alignment has been achieved. Some of the arthroplasty jigs may comprise a jig body that is configured to align with a surface of a bone, and that is marked with identifying information. Certain of the methods may comprise providing an arthroplasty jig comprising a jig body that is configured to align with a surface of a bone, or providing an arthroplasty jig blank, and marking the arthroplasty jig or the arthroplasty jig blank with identifying information.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: June 29, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi
  • Patent number: 11045228
    Abstract: Methods of manufacturing a custom arthroplasty resection guide or jig are disclosed herein. For example, one method may include: generating MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; generating MRI body coil two dimensional images, wherein the body cod images include a hip region of the patient, the knee region of the patient and an ankle region of the patient; in the knee coil images, identifying first locations of knee landmarks; in the body coil images, identifying second locations of the knee landmarks; run a transformation with the first and second locations, causing the knee coil images and body coil images to generally correspond with each other with respect to location and orientation.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: June 29, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Keun Song, Oleg Mishin, Michael Santarella
  • Patent number: 11045227
    Abstract: A computer-implemented method of preoperatively planning a surgical procedure on a knee of a patient including determining femoral condyle vectors and tibial plateau vectors based on image data of the knee, the femoral condyle vectors and the tibial plateau vectors corresponding to motion vectors of the femoral condyles and the tibial plateau as they move relative to each other. The method may also include modifying a bone model representative of at least one of the femur and the tibia into a modified bone model based on the femoral condyle vectors and the tibial plateau vectors. And the method may further include determining coordinate locations for a resection of the modified bone model.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: June 29, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Venkata Surya Sarva, Irene Min Choi, Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin
  • Patent number: 11033300
    Abstract: A method for planning an arthroplasty procedure on a patient bone. The method may include accessing generic bone data stored in a memory of a computer, using the computer to generate modified bone data by modifying the generic bone data according to medical imaging data of the patient bone, using the computer to derive a location of non-bone tissue data relative to the modified bone data, and superimposing implant data and the modified bone data in defining a resection of an arthroplasty target region of the patient bone.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: June 15, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin, Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Patent number: 11033334
    Abstract: A method of performing an arthroplasty procedure on a knee region of a femur of a patient where an implant is implanted on the knee region of the femur as part of the arthroplasty procedure is disclosed herein. The method may include generating a planned postoperative positional relationship of the implant relative to the femur. The method may also include, with the computerized representation of the implant in the planned postoperative positional relationship with the computerized representation of the knee region of the femur, generating a planned resection of the femur that will facilitate the implant being implanted on the knee region of the femur in the planned postoperative positional relationship. And the method may also include guiding an actual resection of the femur according to the planned resection of the femur.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: June 15, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Patent number: 10993744
    Abstract: A method of planning an arthroplasty procedure on a femur and tibia of a patient. The method includes receiving a first two-dimensional image of the femur and the tibia, and identifying, in the first two-dimensional image, a proximal femur feature, a distal tibia feature, and a bone contour. The method further includes running a transformation process to align a bone model representative of the femur and the tibia into a coordinate system with the first two-dimensional image, the bone model having a bone model contour that is aligned with the bone contour of the femur and the tibia in the first two-dimensional image. And the method further includes applying an implant model to the bone model in order to determine coordinate locations for the arthroplasty resection.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: May 4, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Keun Song, Oleg Mishin, Michael Santarella, Elena I. Pavlovskaia, Boris E. Shpungin
  • Patent number: 10912571
    Abstract: A smooth mating surface model defining a mating surface of a customized arthroplasty jig is generated. For example, sagittal slices of a volumetric image of a patient bone are segmented with segmentation splines. An anatomically accurate model of the patient bone is generated from the segmentation splines. The anatomically accurate model includes anatomically accurate segmentation splines. The anatomically accurate segmentation splines are transformed into mating surface contours. Any inadequate segments of the mating surface contours are modified to obtain modified mating surface contours. A mating surface model of the patient bone is generated based on the mating surface contours and the modified mating surface contours. Three-dimensional cross-sections of the mating surface model are smoothed to generate the smooth mating surface model.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: February 9, 2021
    Assignee: Howmedica Osteonics Corporation
    Inventors: Elena I. Pavlovskaia, Boris E. Shpungin, Oleg Mishin, Olga Sominskaya
  • Publication number: 20210000511
    Abstract: A method of planning an arthroplasty procedure on a femur and tibia of a patient. The method includes receiving a first two-dimensional image of the femur and the tibia, and identifying, in the first two-dimensional image, a proximal femur feature, a distal tibia feature, and a bone contour. The method further includes running a transformation process to align a bone model representative of the femur and the tibia into a coordinate system with the first two-dimensional image, the bone model having a bone model contour that is aligned with the bone contour of the femur and the tibia in the first two-dimensional image. And the method further includes applying an implant model to the bone model in order to determine coordinate locations for the arthroplasty resection.
    Type: Application
    Filed: September 11, 2020
    Publication date: January 7, 2021
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Keun Song, Oleg Mishin, Michael Santarella, Elena I. Pavlovskaia, Boris E. Shpungin
  • Publication number: 20200337734
    Abstract: Methods of manufacturing a custom arthroplasty resection guide or jig are disclosed herein. For example, one method may include: generating MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; generating MRI body coil two dimensional images, wherein the body cod images include a hip region of the patient, the knee region of the patient and an ankle region of the patient; in the knee coil images, identifying first locations of knee landmarks; in the body coil images, identifying second locations of the knee landmarks; run a transformation with the first and second locations, causing the knee coil images and body coil images to generally correspond with each other with respect to location and orientation.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Keun Song, Oleg Mishin, Michael Santarella
  • Publication number: 20200323561
    Abstract: A computer-implemented method of preoperatively planning a surgical procedure on a knee of a patient including determining femoral condyle vectors and tibial plateau vectors based on image data of the knee, the femoral condyle vectors and the tibial plateau vectors corresponding to motion vectors of the femoral condyles and the tibial plateau as they move relative to each other. The method may also include modifying a bone model representative of at least one of the femur and the tibia into a modified bone model based on the femoral condyle vectors and the tibial plateau vectors. And the method may further include determining coordinate locations for a resection of the modified bone model.
    Type: Application
    Filed: May 4, 2020
    Publication date: October 15, 2020
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Venkata Surya Sarva, Irene Min Choi, Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin
  • Publication number: 20200261119
    Abstract: A method for planning an arthroplasty procedure on a patient bone. The method may include accessing generic bone data stored in a memory of a computer, using the computer to generate modified bone data by modifying the generic bone data according to medical imaging data of the patient bone, using the computer to derive a location of non-bone tissue data relative to the modified bone data, and superimposing implant data and the modified bone data in defining a resection of an arthroplasty target region of the patient bone.
    Type: Application
    Filed: February 27, 2020
    Publication date: August 20, 2020
    Applicant: Howmedica Osteonics Corporation
    Inventors: Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin, Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Publication number: 20200205899
    Abstract: Disclosed herein is a surgical guide tool for use in total hip replacement surgery. The surgical guide tool may include a customized mating region and a resection guide. The customized mating region and the resection guide are referenced to each other such that, when the customized mating region matingly engages a surface area of a proximal femur, the resection guide will be aligned to guide a resectioning of the proximal femur along a preoperatively planned resection plane.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Michael Koehle, Lorenzo R. Deveza