Patents Assigned to Oyla Inc.
  • Patent number: 11455710
    Abstract: A device and method of object detection in a scene by combining traditional 2D visual light imaging such as pixels with 3D data such as a voxel map are described. A single lens directs image light from the scene to a dichroic mirror which then provides light to a both a 2D visible light image sensor and a 3D sensor, such as a time-of-flight sensor that uses a transmitted, modulated IR light beam, which is then synchronously demodulated to determine time of flight as well as 2D coordinates. 2D portions (non-distance) of 3D voxel image data are aligned with the 2D pixel image data such that each is responsive to the same portion of the scene. Embodiments determine true reflectivity, true scale, and image occlusion. 2D images may be enhanced by the 3D true reflectivity. Combined data may be used as training data for object detection and recognition.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: September 27, 2022
    Assignee: Oyla, Inc.
    Inventors: Ralph Spickermann, Raghavendra Singh, Srinath Kalluri
  • Publication number: 20210334944
    Abstract: A device and method of object detection in a scene by combining traditional 2D visual light imaging such as pixels with 3D data such as a voxel map are described. A single lens directs image light from the scene to a dichroic mirror which then provides light to a both a 2D visible light image sensor and a 3D sensor, such as a time-of-flight sensor that uses a transmitted, modulated IR light beam, which is then synchronously demodulated to determine time of flight as well as 2D coordinates. 2D portions (non-distance) of 3D voxel image data are aligned with the 2D pixel image data such that each is responsive to the same portion of the scene. Embodiments determine true reflectivity, true scale, and image occlusion. 2D images may be enhanced by the 3D true reflectivity. Combined data may be used as training data for object detection and recognition.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 28, 2021
    Applicant: Oyla, Inc.
    Inventors: Ralph Spickermann, Raghavendra Singh, Srinath Kalluri
  • Publication number: 20210325540
    Abstract: An optical device creates 3D images comprising a field of points, each point comprising horizontal, vertical, and distance metrics. The device comprises an illumination subsystem, comprising light sources, such as LEDs, a non-resonant beam steering element such as a micro-electro-mechanical system (MEMS) mirror, beam-shaping optics, a beam director plate, and a diffuser. The device also comprises an imaging subsystem with one or more optical detector chips that measure time-of-flight (TOF). Devices may dynamically and sequentially images solid-angle sub-regions of interest, in an arbitrary order, out of a total FOV, using eye-safe illumination. The corresponding received image portions are stitched together. The beam steering element is non-resonant, allowing arbitrary and rapid changes to its pointing vector. Beam shaping optics generates rectangular solid-angle illumination. One detector chip integrates light from one sub-region while another chip is reads out image data.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 21, 2021
    Applicant: OYLA, INC
    Inventors: Ralph SPICKERMANN, Srinath KALLURI, Siddharth JAIN
  • Publication number: 20190041518
    Abstract: An optical device creates a 3D image of a volume of interest comprising horizontal, vertical, and distance information for each voxel. Two pairs of two Risley prisms rotate synchronously to first create outgoing modulated illumination beams, and second to direct incoming light to an image sensor. Synchronization allows the imaging portion of the system to look at the same field of view as is illuminated. This field of view is smaller than the volume of interest. The field of view is scanned both horizontal and vertically to encompass the volume of interest, and may by directed to any arbitrary field of view. The illumination beam is amplitude modulated. The image sensor demodulates synchronously, computing time-of-flight for each pixel. Modulation frequency and sensor integration time are dynamically adjusted responsive to a desired volume of interest or field of view.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Applicant: Oyla Inc.
    Inventors: Ralph Spickermann, Srinath Kalluri
  • Publication number: 20190041519
    Abstract: An optical device creates a 3D image of a volume of interest comprising horizontal, vertical, and distance information for each voxel. An illumination beam director and an imaging beam director are synchronized to each point to a selected, arbitrary, dynamically selectable reduced field of view, within a total field of view. Each reduced field of view is illuminated at once by a modulated continuous wave light source; and is imaged at once, using a pixel-array image sensor comprising time-of-flight for each of at least 8,000 pixels. The device sequences through 4 to 600 reduced fields of view until the total field of view is imaged. The device is free of rotating mechanical components. The pixel-array image sensor demodulates synchronously with the light source. Modulation frequency and sensor integration time are dynamically adjusted responsive to a desired volume of interest or field of view.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Applicant: Oyla Inc.
    Inventors: Ralph Spickermann, Srinath Kalluri