Abstract: The present application concerns a microfluidic cassette for synthesizing a radiotracer including a microfluidic circuit in a support card that includes at least one intake for supply by a vial, at least one isotope port, at least one reaction chamber, at least one mixing chamber, at least one formulation chamber, and at least one connection for a syringe, linked together by capillaries. Also disclosed is a method for synthesizing a radiotracer in such a cassette.
Abstract: Disclosed is a gas targeting system including a body, which has a frustoconical cavity; a cooling circuit including at least one channel which surrounds at least one portion of the cavity; a window, positioned facing an inlet of the cavity in order to close the cavity, including a fine sheet that is permeable to at least a portion of a beam of particles emitted by a particle accelerator and a support grid configured to support pressure differences between and inside of the cavity and an outside of the targeting system, with the fine sheet positioned between the support grid and the cavity; and a support flange which holds the window and is hermetically secured on the body, and which includes a mechanical attachment interface at the outlet of a particle accelerator.
Abstract: Disclosed is a system for irradiating a target. The system includes a particle accelerator configured to at least emit an irradiation beam along an axis, a target-holder mounting outside the accelerator, a radiation-protection enclosure surrounding the target-holder mounting, and a deflection device. The particle accelerator is positioned outside the enclosure. The target-holder mounting includes at least one port configured to receive a target holder for a target to be irradiated. The target-holder mounting is stationary relative to the particle accelerator. The port is offset relative to the axis of the irradiation beam. The deflection device is positioned in the radiation-protection enclosure and is configured to divert the irradiation beam towards the port of the target holder in which the target to be irradiated is inserted.
Type:
Grant
Filed:
March 24, 2016
Date of Patent:
November 10, 2020
Assignee:
P M B
Inventors:
Nicolas Masse, Nancy Tannoury, Alain Perez Delaume
Abstract: A system (100) for controlling the environment in a reaction box (300) comprises a controller (150) configured to control a gas multiplexer (130) to switch between applying an under pressure in the reaction box (300) from a vacuum pump (140) and applying a gas flow from a connected gas source (200) to the reaction box (300) multiple times in a cyclic manner. A particle monitor (160) generates particle information representing a concentration of particles in the reaction box (300). This particle information is stored as a GMP clean room classification notification for the reaction box (300).
Abstract: An irradiation device using ionizing radiation, particularly for radiation therapy and/or radiation biology, simultaneously includes: at least one unit (MER) for emitting ionizing radiation; at least one dose-monitoring unit (MCD); at least one unit for detecting an ionizing radiation dose (MDD); and at least one monitoring and control system (SCC). The units (MER, MDD, MCD) and the system (SCC) are also intelligently interconnected therebetween so as to engage with one another and form an intelligent monitoring and adjustment loop, such as to controllably, precisely and desirably produce strong doses of ionizing radiation of at least 0.01 Gy, having a precision within at least one 1? Gy but preferably 1 n Gy, in strong dose rates up to 1000 Gy/s with power within a range of 1 to 50 Me V in very brief time intervals of at least 0.1 ?s, preferably 1 ms.