Patents Assigned to Pace, Inc.
-
Patent number: 12161872Abstract: Systems and methods for cardiac pacing during a procedure are disclosed and may include an external pulse generator (EPG) for connecting to a lead. A remote-control module (RCM) wirelessly connected to the EPG may include user inputs to control the EPG. A central processing unit (CPU) with a memory unit for storing code and a processor for executing the code may be included where the CPU is connected to the EPG and RCM. The code may control the EPG in response to user input from the RCM. The CPU may be disposed in the EPG or the RCM, or an interface module (IM) configured to communicate between an otherwise conventional EPG and the RCM. The executable code may perform a continuity test (CT) routine, a capture check (CC) routine, rapid pacing (RP) routine, and/or a back-up pacing (BP) routine, in response to user input from the RCM.Type: GrantFiled: October 13, 2023Date of Patent: December 10, 2024Assignee: Solo Pace Inc.Inventor: David V. Daniels
-
Publication number: 20240042216Abstract: Systems and methods for cardiac pacing during a procedure are disclosed and may include an external pulse generator (EPG) for connecting to a lead. A remote-control module (RCM) wirelessly connected to the EPG may include user inputs to control the EPG. A central processing unit (CPU) with a memory unit for storing code and a processor for executing the code may be included where the CPU is connected to the EPG and RCM. The code may control the EPG in response to user input from the RCM. The CPU may be disposed in the EPG or the RCM, or an interface module (IM) configured to communicate between an otherwise conventional EPG and the RCM. The executable code may perform a continuity test (CT) routine, a capture check (CC) routine, rapid pacing (RP) routine, and/or a back-up pacing (BP) routine, in response to user input from the RCM.Type: ApplicationFiled: October 13, 2023Publication date: February 8, 2024Applicant: Solo Pace Inc.Inventor: David V. DANIELS
-
Patent number: 11872403Abstract: Systems and methods for cardiac pacing during a procedure are disclosed and may include an external pulse generator (EPG) for connecting to a lead. A remote-control module (RCM) wirelessly connected to the EPG may include user inputs to control the EPG. A central processing unit (CPU) with a memory unit for storing code and a processor for executing the code may be included where the CPU is connected to the EPG and RCM. The code may control the EPG in response to user input from the RCM. The CPU may be disposed in the EPG or the RCM, or an interface module (IM) configured to communicate between an otherwise conventional EPG and the RCM. The executable code may perform a continuity test (CT) routine, a capture check (CC) routine, rapid pacing (RP) routine, and/or a back-up pacing (BP) routine, in response to user input from the RCM.Type: GrantFiled: May 9, 2022Date of Patent: January 16, 2024Assignee: Solo Pace Inc.Inventor: David V. Daniels
-
Patent number: 11819700Abstract: Systems and methods for cardiac pacing during a procedure are disclosed and may include an external pulse generator (EPG) for connecting to a lead. A remote-control module (RCM) wirelessly connected to the EPG may include user inputs to control the EPG. A central processing unit (CPU) with a memory unit for storing code and a processor for executing the code may be included where the CPU is connected to the EPG and RCM. The code may control the EPG in response to user input from the RCM. The CPU may be disposed in the EPG or the RCM, or an interface module (IM) configured to communicate between an otherwise conventional EPG and the RCM. The executable code may perform a continuity test (CT) routine, a capture check (CC) routine, rapid pacing (RP) routine, and/or a back-up pacing (BP) routine, in response to user input from the RCM.Type: GrantFiled: November 22, 2022Date of Patent: November 21, 2023Assignee: Solo Pace Inc.Inventor: David V. Daniels
-
Publication number: 20230085166Abstract: Systems and methods for cardiac pacing during a procedure are disclosed and may include an external pulse generator (EPG) for connecting to a lead. A remote-control module (RCM) wirelessly connected to the EPG may include user inputs to control the EPG. A central processing unit (CPU) with a memory unit for storing code and a processor for executing the code may be included where the CPU is connected to the EPG and RCM. The code may control the EPG in response to user input from the RCM. The CPU may be disposed in the EPG or the RCM, or an interface module (IM) configured to communicate between an otherwise conventional EPG and the RCM. The executable code may perform a continuity test (CT) routine, a capture check (CC) routine, rapid pacing (RP) routine, and/or a back-up pacing (BP) routine, in response to user input from the RCM.Type: ApplicationFiled: November 22, 2022Publication date: March 16, 2023Applicant: Solo Pace Inc.Inventor: David V. DANIELS
-
Publication number: 20230042385Abstract: Systems and methods for cardiac pacing during a procedure are disclosed and may include an external pulse generator (EPG) for connecting to a lead. A remote-control module (RCM) wirelessly connected to the EPG may include user inputs to control the EPG. A central processing unit (CPU) with a memory unit for storing code and a processor for executing the code may be included where the CPU is connected to the EPG and RCM. The code may control the EPG in response to user input from the RCM. The CPU may be disposed in the EPG or the RCM, or an interface module (IM) configured to communicate between an otherwise conventional EPG and the RCM. The executable code may perform a continuity test (CT) routine, a capture check (CC) routine, rapid pacing (RP) routine, and/or a back-up pacing (BP) routine, in response to user input from the RCM.Type: ApplicationFiled: May 9, 2022Publication date: February 9, 2023Applicant: Solo Pace Inc.Inventor: David V. DANIELS
-
Patent number: 10237926Abstract: An induction heater having inner and outer chamber cylinders connected in an air tight manner to a base and cover with an inner chamber being formed within the inner chamber cylinder and an outer chamber being formed between the inner and outer chamber cylinders, a heat exchange core disposed in the inner chamber, and an induction heater coil disposed in the outer chamber extending around the inner chamber cylinder. A flow path is provided from a cool air inlet in the base, along the outer chamber, into the inner chamber and through the inner chamber and core to a heated air outlet in the base in a counterflow direction relative to the flow along the outer chamber. The heater is especially well suited for use in convective soldering and rework apparatus.Type: GrantFiled: March 25, 2016Date of Patent: March 19, 2019Assignee: PACE, INC.Inventors: Thomas Wayne Miller, Ramgopal Nair
-
Publication number: 20170135161Abstract: An induction heater having inner and outer chamber cylinders connected in an air tight manner to a base and cover with an inner chamber being formed within the inner chamber cylinder and an outer chamber being formed between the inner and outer chamber cylinders, a heat exchange core disposed in the inner chamber, and an induction heater coil disposed in the outer chamber extending around the inner chamber cylinder. A flow path is provided from a cool air inlet in the base, along the outer chamber, into the inner chamber and through the inner chamber and core to a heated air outlet in the base in a counterflow direction relative to the flow along the outer chamber. The heater is especially well suited for use in convective soldering and rework apparatus.Type: ApplicationFiled: March 25, 2016Publication date: May 11, 2017Applicant: PACE, INC.Inventors: Thomas Wayne Miller, Ramgopal Nair
-
Patent number: 7283856Abstract: A medical electrical lead system for neurological applications has a distal portion having a plurality of independently positionable seed electrodes, each of which may be connected via an interface to an implantable medical device. The interface allows the seed electrodes to be positioned, then excess wire trimmed, facilitating simplified connection of multiple independent electrodes to a single device. Seed electrodes according to the invention are small, have relatively low mass, and are minimally destructive of surrounding tissue.Type: GrantFiled: April 9, 2004Date of Patent: October 16, 2007Assignee: Neuro Pace, Inc.Inventor: C. Lance Boling
-
Patent number: 7043881Abstract: An insulated glass (IG) assembly for windows which includes an internal lighting system is disclosed. The IG assembly includes two or more panes of glass, a spacer and a strip of light emitting diodes (LEDs). The spacer separates glass panes and provides the hermetic seal for the IG assembly. The spacer extends around the periphery of the glass panes with a portion of its ends overlapping to form a sealed corner joint. The LED light strip includes a plurality of LED lamps connected in series by thin electrical contact wires fixed in a flexible nonconductive substrate. The LED strip is fixed to the spacer and extends around the periphery of the insulated glass unit. The lead wires from the LED light strip pass through the corner joint between the overlapped ends of the spacer. The LED light systems provide dependable illumination but emit relatively little thermal energy. Consequently, the LED light system maintains the thermal insulating properties of an insulated glass unit.Type: GrantFiled: June 14, 2002Date of Patent: May 16, 2006Assignee: Tem-Pace, Inc.Inventors: Richard J. Krause, Sr., Richard J. Krause, Jr.
-
Publication number: 20030230045Abstract: An insulated glass (IG) assembly for windows which includes an internal lighting system is disclosed. The IG assembly includes two or more panes of glass, a spacer and a strip of light emitting diodes (LEDs). The spacer separates glass panes and provides the hermetic seal for the IG assembly. The spacer extends around the periphery of the glass panes with a portion of its ends overlapping to form a sealed corner joint. The LED light strip includes a plurality of LED lamps connected in series by thin electrical contact wires fixed in a flexible nonconductive substrate. The LED strip is fixed to the spacer and extends around the periphery of the insulated glass unit. The lead wires from the LED light strip pass through the corner joint between the overlapped ends of the spacer. The LED light systems provide dependable illumination but emit relatively little thermal energy. Consequently, the LED light system maintains the thermal insulating properties of an insulated glass unit.Type: ApplicationFiled: June 14, 2002Publication date: December 18, 2003Applicant: Tem-Pace, IncInventors: Richard J. Krause, Richard J. Krause
-
Patent number: 6230049Abstract: The disclosed invention is an integrated system for EEG monitoring and electrical stimulation from a multiplicity of scalp or intracranial implanted electrodes. The system integrates EEG monitoring and brain stimulation, supports remote electrode selection for stimulation and provides a wireless connection between the patient's brain electrodes and the EEG analysis workstation used to collect EEG data, analyze EEG signals and control system functionality.Type: GrantFiled: August 13, 1999Date of Patent: May 8, 2001Assignee: Neuro Pace, Inc.Inventors: Robert E. Fischell, David R. Fischell
-
Patent number: 4571482Abstract: Electric heater assembly for use typically with hand-held soldering or desoldering devices includes an elongated resistance element formed from a thin flat metal foil having three connected areas of different resistance, the differing resistance being caused by the different widths of the areas. The first area, to which terminals are attached, is the widest and acts as a heat sink. The second area decreases in width to the first area and acts as a transition area between the first and third areas. The first and second areas include first and second separated portions for providing electrical current to the first area and returning it therefrom. The first area includes first and second strips respectively connected to the first and second portions of the second area. The strips extend adjacent a first side edge of the third area in a side-by-side relationship to the distal end of the resistance element and then back towards the second area to a position where they are connected to one another.Type: GrantFiled: October 27, 1983Date of Patent: February 18, 1986Assignee: Pace, Inc.Inventor: Alan D. Vogel
-
Patent number: 4157481Abstract: A switching circuit is comprised of a triac in series with the electrical load across an AC power source. The triac commences to conduct only after a unidirectional, gate-controlled SCR is conducting. Conduction of the SCR drives the gate of the triac enabling conduction. In turn, the SCR is controlled by a circuit network which regulates the potential at the SCR gate and is responsive to an external device which may be a photodetector and movable shutter in combination with a light-emitting diode (LED). Load conduction commences in synchronism with the source voltage crossing of the reference axis in a selected direction. When the load is turned off, an integral cycle is provided.Type: GrantFiled: July 19, 1977Date of Patent: June 5, 1979Assignee: Pace, Inc.Inventor: John F. Walton