Patents Assigned to Pacesetter
-
Patent number: 12053633Abstract: The present disclosure provides a grip sensor for quantifying pain experienced by a patient during spinal cord stimulation (SCS). The grip sensor includes an electronics enclosure, an annular outer shell substantially surrounding the electronics enclosure and sized to be held by the patient, a pressure sensor embedded in the outer shell and communicatively coupled to the electronics enclosure, the pressure sensor configured to measure a grip strength of the patient as SCS is applied to the patient, and a plurality of galvanic skin response sensors communicatively coupled to the electronics enclosure and configured to measure an electrical impedance of the skin of the patient as SCS is applied to the patient.Type: GrantFiled: July 7, 2021Date of Patent: August 6, 2024Assignee: Pacesetter, Inc.Inventors: Alexander Kent, Edward Karst, Gene A. Bornzin
-
Patent number: 12053207Abstract: A loading tool for loading a biostimulator onto a biostimulator delivery system is described. The loading tool includes a first body portion and a second body portion connected by a hinge. A latch is mounted on the first body portion, and the latch can be locked to fasten the first body portion to the second body portion. A biostimulator can be mounted in the loading tool, and a tether of a biostimulator delivery system can be inserted through a funnel in the loading tool to engage the biostimulator. An operator can use only one hand to unlock the latch, open the loading tool, and remove the loading tool from the biostimulator prior to delivering the biostimulator into a patient. Other embodiments are also described and claimed.Type: GrantFiled: March 20, 2019Date of Patent: August 6, 2024Assignee: PACESETTER, INC.Inventors: Byron Liehwah Chun, Sondra Orts, Thomas B. Eby, Stephanie M. Raymond, Mike Sacha, Bernhard Arnar, Adam Weber, Jennifer Heisel, Wade Keller
-
Patent number: 12042651Abstract: A method of pacing a His bundle of a patient heart using a stimulation system including a memory, a pulse generator, a stimulating electrode and at least one sensing electrode includes applying a plurality of impulses through the stimulating electrode to induce a plurality of responses from the patient heart. Each impulse of the plurality of impulses is delivered at a different impulse energy corresponding to a respective output setting of the stimulation system. The response characteristics for each of the plurality of responses are measured and each impulse is assigned a classification based on whether the respective response characteristics indicate capture of one or both of the His bundle and a ventricle of the patient heart. The output setting and classification for each impulse is then stored in the memory.Type: GrantFiled: March 18, 2021Date of Patent: July 23, 2024Assignee: Pacesetter, Inc.Inventors: Julie Prillinger, Gene A. Bornzin, Stuart Rosenberg, Aditya Goil, Wenwen Li, Pritika Toutam, Didier Theret, Fujian Qu
-
Patent number: 12042658Abstract: A biostimulator, such as a leadless pacemaker, having electrode(s) coated with low-polarization coating(s), is described. A low-polarization coating including titanium nitride can be disposed on an anode, and a low-polarization coating including a first layer of titanium nitride and a second layer of platinum black can be disposed on a cathode. The anode can be an attachment feature used to transmit torque to the biostimulator. The cathode can be a fixation element used to affix the biostimulator to a target tissue. The low-polarization coating(s) impart low-polarization to the electrode(s) to enable an atrial evoked response to be detected and used to effect automatic output regulation of the biostimulator. Other embodiments are also described and claimed.Type: GrantFiled: March 11, 2021Date of Patent: July 23, 2024Assignee: PACESETTER, INC.Inventors: Gene A. Bornzin, Wesley Alleman, Tyler J. Strang, Keith Victorine, Nicole Cooper
-
Patent number: 12042292Abstract: Described herein are methods, devices, and systems that monitor heart rate and/or for arrhythmic episodes based on sensed intervals that can include true R-R intervals as well as over-sensed R-R intervals. True R-R intervals are initially identified from an ordered list of the sensed intervals by comparing individual sensed intervals to a sum of an immediately preceding two intervals, and/or an immediately following two intervals. True R-R intervals are also identified by comparing sensed intervals to a mean or median of durations of sensed intervals already identified as true R-R intervals. Individual intervals in a remaining ordered list of sensed intervals (from which true R-R intervals have been removed) are classified as either a short interval or a long interval, and over-sensed R-R intervals are identified based on the results thereof. Such embodiments can be used, e.g., to reduce the reporting of and/or inappropriate responses to false positive tachycardia detections.Type: GrantFiled: December 27, 2022Date of Patent: July 23, 2024Assignee: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill
-
Patent number: 12036404Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curvate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.Type: GrantFiled: October 13, 2020Date of Patent: July 16, 2024Assignee: Pacesetter, Inc.Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
-
Patent number: 12033807Abstract: A capacitor and methods of processing an anode metal foil are presented. The capacitor includes a housing, one or more anodes disposed within the housing, one or more cathodes disposed within the housing, one or more separators disposed between an adjacent anode and cathode, and an electrolyte disposed around the one or more anodes, one or more cathodes, and one or more separators within the housing. The one or more anodes each include a metal foil that includes a first plurality of tunnels through a thickness of the metal foil in a first ordered arrangement, the first ordered arrangement being a close packed hexagonal array arrangement, and having a first diameter, and a second plurality of tunnels through the thickness of the metal foil having a second ordered arrangement and a second diameter greater than the first diameter.Type: GrantFiled: October 26, 2021Date of Patent: July 9, 2024Assignee: Pacesetter, Inc.Inventors: Ralph Jason Hemphill, David R. Bowen, Kurt J. Erickson, Peter Fernstrom
-
Patent number: 12029910Abstract: Implementations described and claimed herein provide systems and methods for delivering and retrieving a leadless pacemaker. In one implementation, a leadless pacemaker has a docking end, and the docking end has a docking projection extending from a surface. A docking cap has a body defining a chamber. A retriever has sheaths extending with lumens distally from the chamber. A snare extends between the lumens forming a first snare loop pointing in a first direction and a second snare loop pointing in a second direction with a docking space formed therebetween. The snare is movable between an engaged position and a disengaged position by translating the first snare wire and the second snare wire within the first snare lumen and the second snare lumen. The engaged position includes the first snare wire and the second snare wire tightened around the docking projection within the docking space.Type: GrantFiled: August 6, 2020Date of Patent: July 9, 2024Assignee: PACESETTER, INC.Inventors: Arundhati Kabe, Thomas B. Eby
-
Patent number: 12023508Abstract: Certain embodiments described herein related to methods, devices, and systems that provide improved communications between first and second IMDs remotely located relative to one another and capable of communicating using both conductive communication and RF communication. Such a method can include the first IMD using conductive communication to transmit message(s) intended for the second IMD, without using RF communication, during a first period of time that a first trigger event is not detected. The method can also include the first IMD detecting the first trigger event, and in response thereto, the first IMD using RF communication to transmit message(s) intended for the second IMD during a second period of time. Thereafter, in response to first IMD detecting a second trigger event, the first IMD uses conductive communication to transmit one or more messages intended for the second IMD, without using RF communication, during a third period of time.Type: GrantFiled: March 2, 2022Date of Patent: July 2, 2024Assignee: Pacesetter, Inc.Inventors: Shiloh Sison, Xi Lin Chen, Xiyao Xin, Xin Huang
-
Patent number: 12023504Abstract: Methods, devices and program products are provided for managing a pacing therapy using an implantable medical device (IMD). The methods, devices and program products sense cardiac activity (CA) signals at electrodes located proximate to multiple left ventricular (LV) sites and a right ventricular (RV) site of the heart and utilizing one or more processors to measure activation times between the multiple LV sites and the RV site based on the CA signals. The processors program an order of activation for the multiple LV sites based on the activation times and identify an RV activation time and a septum activation time based on the CA signals. The processors calculate a septum to RV activation time (SRAT) based on the RV and septum activation times and program an AVSRAT delay based on the SRAT.Type: GrantFiled: June 28, 2022Date of Patent: July 2, 2024Assignee: Pacesetter, Inc.Inventors: David Muller, Raffaele Corbisiero
-
Patent number: 12021555Abstract: An implantable medical device, external device and method for managing a wireless communication are provided. The IMD includes a transceiver configured to communicate wirelessly, with an external device (ED), utilizing a protocol that utilizes multiple physical layers. The transceiver is configured to transmit information indicating that the transceiver is configured with first, second, and third physical layers (PHYs) for wireless communication. The IMD includes memory configured to store program instructions. The IMD includes one or more processors configured to execute instructions to obtain an instruction designating one of the first, second and third PHY to be utilized for at least one of transmission or reception, during a communication session, with the external device and manage the transceiver to utilize, during the communication session, the one of the first, second and third PHY as designated.Type: GrantFiled: October 30, 2020Date of Patent: June 25, 2024Assignee: Pacesetter, Inc.Inventors: Perry Li, Jeffery Crook, Souvik Dubey
-
Patent number: 12017078Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include the IMD using an accelerometer to identify when the orientation of the IMD is such that the IMD will likely be able to successfully communicate with another IMD via one or more communication pulses sent from the IMD to the other IMD. The method also includes the IMD sending of the one or more communication pulses, that are used to communicate with the other IMD, when the orientation of the IMD is such that the IMD will likely be able to successfully communicate with the other IMD via one or more communication pulses sent from the IMD to the other IMD.Type: GrantFiled: March 22, 2023Date of Patent: June 25, 2024Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
-
Patent number: 12011605Abstract: A method of manufacturing a filtered feedthrough assembly for use with an implantable medical device. The method may include gold brazing an insulator to a flange at first braze joint, and gold brazing a plurality of feedthrough wire to the insulator at second braze joints. The method may further include applying a first non-conductive epoxy to the first braze joint, and applying a second non-conductive epoxy to the second braze joint. The method may further include grit blasting a face of the flange, applying a conductive epoxy to the face of the flange, and attaching an EMI filter to the conductive epoxy such that it is grounded to the flange via the conductive epoxy and not via the first braze joint or the second braze joints.Type: GrantFiled: December 21, 2022Date of Patent: June 18, 2024Assignee: Pacesetter, Inc.Inventor: Haytham M. Hussein
-
Patent number: 12011296Abstract: Systems and methods are provided for implanting an implantable cardiac monitor. An insertion system includes an implantable cardiac monitor (ICM). An insertion housing comprises a passage extending from a first end of the insertion housing to a second end of the insertion housing. The passage configured to receive the obturator and a receptacle in communication with the passage and an external environment. The receptacle configured to receive the ICM. An obturator is configured to move within the passage when the obturator is moved relative to the insertion housing. The obturator has a channel forming section at a distal end thereof and a motion limiter is provided on at least one of the shaft and the insertion housing.Type: GrantFiled: November 30, 2021Date of Patent: June 18, 2024Assignee: Pacesetter, Inc.Inventors: Li Jin, Gene A. Bornzin, Zoltan Somogyi, Alex Soriano, Jake Singer, Tejpal Singh, Wenbo Hou, Julie Prillinger, Armando M. Cappa, Mitch Goodman, Tracee Eidenschink
-
Patent number: 12011600Abstract: A system is provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device (IMD). The system also includes one or more processors configured to determine an atrial-ventricular (AV) conduction interval (ARRV) between the A site and a first RV sensed event at the RV site, determine an inter-ventricular (VV) conduction interval (RLV-RRV) between a paced event at the LV site and a second RV sensed event at the RV site, and set a ventricular refractory period (VRP) based on at least one of the AV conduction interval or the VV conduction interval and a predetermined offset. The one or more processors are also configured to blank signals over the RV sensing channel during the VRP.Type: GrantFiled: April 21, 2022Date of Patent: June 18, 2024Assignee: Pacesetter, Inc.Inventor: Jan O. Mangual-Soto
-
Publication number: 20240189609Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.Type: ApplicationFiled: February 21, 2024Publication date: June 13, 2024Applicant: Pacesetter, Inc.Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
-
Patent number: 12005262Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.Type: GrantFiled: October 4, 2021Date of Patent: June 11, 2024Assignee: PACESETTER, INC.Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
-
Patent number: 12004775Abstract: Disclosed herein is a catheter for delivering an implantable medical lead to an implantation site near an ostium leading to a proximal region of a coronary sinus. The catheter includes a distal end, a proximal end opposite the distal end, a tubular body extending between the distal and proximal ends, an atraumatic fixation structure defining a distal termination of the distal end, and a lead receiving lumen. The atraumatic fixation structure is configured to enter the ostium and passively pivotally anchor with the proximal region of the coronary sinus. The lead receiving lumen extends along the tubular body from the proximal end to an opening defined in a side of the tubular body near the distal end and proximal the atraumatic fixation structure.Type: GrantFiled: October 15, 2020Date of Patent: June 11, 2024Assignee: PACESETTER, INC.Inventors: Wenwen Li, Gene A. Bornzin, Didier Theret, Luke C. McSpadden, Nima Badie
-
Publication number: 20240180484Abstract: Implantable systems, and methods for use therewith, monitor a patient's arterial blood pressure without requiring an intravascular pressure transducer. A plurality of calibrations factors are stored, each of which is associated with a respective one of a plurality of different postures, activity levels, or HR ranges, or different combinations thereof. A signal indicative of activity of the patient's heart, and a signal indicative of changes in arterial blood volume of the patient are obtained, and a pulse arrival time (PAT) value is determined. A current posture, activity level, and/or HR of the patient is/are determined and used to identify stored calibration factor(s) that correspond thereto. Values indicative of the patient's arterial blood pressure is/are determined based on the PAT value and the stored calibration factor(s) identified based on the patient's current posture, activity level, and/or HR. Such value(s) and/or changes thereto can be used to trigger and/or adjust therapy.Type: ApplicationFiled: October 4, 2023Publication date: June 6, 2024Applicant: Pacesetter, Inc.Inventors: Xing Pei, Gene A. Bornzin, Alexander R. Bornzin, Jong Gill, Wenwen Li
-
Publication number: 20240181265Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.Type: ApplicationFiled: February 13, 2024Publication date: June 6, 2024Applicant: Pacesetter, Inc.Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar