Abstract: An implantable medical pulse generator is disclosed herein. The pulse generator is for administering electrotherapy via an implantable medical lead having a lead connector end on a proximal end of the lead. The pulse generator includes a can and a header coupled to the can. The header includes a first lead connector end receiving receptacle and a retainer configured to secure the lead connector end within the first receptacle. The retainer includes a member and a first collar, which is coaxially aligned with the first receptacle. The first collar includes an inner circumferential surface and a gap in the inner circumferential surface. The inner circumferential surface extends generally continuous and unbroken between a first face of the gap and a second face of the gap. The member is configured such that acting on the member causes a gap distance between the first face of the gap and second face of the gap to decrease, thereby reducing an inner circumferential diameter of the first collar.
Abstract: Exemplary techniques for recording a context for sensed biological data are described. One technique senses biological data from a patient and records supporting data with the sensed biological data.
Abstract: Methods and systems for performing pacing interval optimization are provided. One or more optimum pacing interval is determined for each of a plurality of different ranges of heart rate, different levels of autonomic tone, different body temperature ranges, or combinations thereof. The information (e.g., measures of hemodynamic response) collected to perform pacing interval optimization can be collected and stored in a table over disjoint periods of time. Such measures of hemodynamic performance are preferably relative measures, but can alternatively be absolute measures.
Abstract: A method is provided for trending heart failure based on heart contractility information comprises measuring cardiogenic impedance (CI) measurements along at least a first vector through a heart over a period of time. The method determines contractility estimates from the CI measurements, the contractility estimates relating to contractility of the heart. The method further obtains physiologic and/or surrogate signals representing estimates for or direct measurements of at least one of cardiac volume and pressure of the heart when the CI measurements were obtained. The method identifies correction factors based on the physiologic and/or surrogate signals and applies the correction factors to the contractility estimates to produce contractility trend values over the period of time.
Type:
Application
Filed:
March 16, 2011
Publication date:
September 20, 2012
Applicant:
PACESETTER, INC.
Inventors:
Stuart Rosenberg, Cecilia Qin Xi, Jong Gill, Brian Jeffrey Wenzel, Yelena Nabutovsky, William Hsu
Abstract: A method of determining pacing therapy for an individual patient including determining representative electromechanical physiologic characteristics for a plurality of normal patients having a range of anatomical dimensions and developing a plurality of normal templates. Each template indicates the representative electromechanical physiologic characteristics of a group of normal patients having similar anatomical dimensions.
Abstract: A medical device is disclosed herein that is configured to engage and penetrate a pericardial sac. The device includes an outer tubular body, an inner tubular body, and a helical tissue engagement member. The outer tubular body includes a proximal end, a distal end and a lumen extending between the ends. The inner tubular body includes a proximal end and a distal end. The inner tubular body is located in the lumen of the outer tubular body. The proximal end of the inner tubular body is operably coupled to the proximal end of the outer tubular body. The distal end of the inner tubular body is extendable out of the distal end of the outer tubular body. The helical tissue engagement member is displaceable from a first position to a second position, the first position being in the lumen of the outer tubular body recessed relative to the distal end of the outer tubular body, and the second position extending out of the distal end of the outer tubular body.
Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.
Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.
Abstract: Techniques are described for discriminating ventricular tachycardia (VT) from supraventricular tachycardia (SVT) in circumstances when the ventricular rate exceeds the atrial rate (i.e. V>A). In one example, an initial atrial rate is detected while employing adjustable atrial channel detection parameters that can affect the detection of the true atrial rate—such as a post-ventricular atrial blanking (PVAB) interval or an atrial channel sensitivity level. If the ventricular rate exceeds a VT rate zone threshold with V>A, the device does not immediately deliver high voltage shock therapy as done in other devices. Rather, the device instead selectively adjusts the atrial channel detection parameter(s) to determine if the true atrial rate is equal to the ventricular rate. If so, then such is an indication that the arrhythmia might be SVT rather than VT and various discrimination procedures are employed to distinguish SVT from VT before therapy is delivered.
Abstract: Techniques are provided for use in a pacemaker or implantable cardioverter/defibrillator (ICD) for distinguishing cardiac ischemia from other conditions affecting the morphology of electrical cardiac signals sensed within a patient, such as hypoglycemia, hyperglycemia or other systemic conditions. In one example, the device detects changes in morphological features of cardiac signals indicative of possible cardiac ischemia within the patient, such as changes in ST segment elevation within an intracardiac electrogram (IEGM). The device determines whether the changes in the morphological features are the result of spatially localized changes within a portion of the heart and then distinguishes cardiac ischemia from other conditions affecting the morphology of electrical cardiac signals based on that determination. In another example, the device exploits the interval between the peak of a T-wave (Tmax) and the end of the T-wave (Tend).
Type:
Grant
Filed:
January 17, 2008
Date of Patent:
September 11, 2012
Assignee:
Pacesetter, Inc.
Inventors:
Peter Boileau, Xiaoyi Min, Jong Gill, Rupinder Bharmi, Joseph J. Florio, Michael E. Benser, Gene A. Bornzin
Abstract: An exemplary method includes detecting a QRS complex using cutaneous electrodes, during the QRS complex, detecting an R-wave of a ventricle using an intracardiac electrode, determining if the R-wave occurred during a first, predetermined percentage of the QRS complex width and, based at least in part on the determining, deciding whether a patient is likely to respond to cardiac resynchronization therapy. Such a method may set the predetermined percentage to approximately 50%. An exemplary model includes a parameter for a percentage for the timing of an EGM R-wave with respect to the total width of an ECG QRS complex. Various other exemplary methods, devices, systems, etc. are also disclosed.
Abstract: Techniques are provided for use by implantable medical devices for controlling ventricular pacing using a multi-pole left ventricular (LV) lead. In one example, a single “V sense” test is performed to determine intrinsic interventricular conduction time delays (?n) between the RV electrode and each of the LV electrodes of the multi-pole lead. Likewise, a single “RV pace” test is performed to determine paced interventricular conduction time delays (IVCD_RLn) between the RV electrode and each of the LV electrodes. A set of “LV pace” tests is then performed to determine paced interventricular conduction time delays (IVCD_LRn) between individual LV electrodes and the RV electrode. Optimal or preferred interventricular pacing delays are determined using the intrinsic interventricular conduction delay (?n) values and a set of interventricular correction terms (?n) determined from the results of the RV pace test and the set of LV pace tests. With these techniques, overall test time can be reduced.
Abstract: Systems and methods are provided for use by an implantable medical device capable of automatically adjusting the sensitivity with which electrical cardiac signals are sensed within a patient, i.e. a device equipped with Automatic Sensitivity Control (ASC.) In a first example, ASC parameters are automatically adjusted by the device itself based on parameters derived from both R-waves and T-waves and further based on a detected noise floor. In a second example, a profile representative of the shape of cardiac signals is generated by the device. ASC parameters are then adjusted based on the profile. In various embodiments, histograms are used to determine sizes and shapes of the R-waves and T-waves via statistical prevalence techniques. The histograms are also employed to derive the aforementioned profile.
Abstract: Techniques are provided for tracking patient respiration or other physiologic states based upon intracardiac electrogram (IEGM) signals. In one example, respiration patterns are detected based upon cycle-to-cycle changes in morphological features associated with individual cardiac cycles while taking into account different cardiac rhythm types within the patient, such as predominantly paced or predominantly intrinsic rhythm types. Once respiration patterns have been identified, episodes of abnormal respiration, such as apnea, hyperpnea, nocturnal asthma, or the like, may be detected and therapy automatically delivered. In addition, techniques for detecting abnormal respiration using a pattern classifier are described, wherein the pattern classifier is trained while distinguishing the different cardiac rhythm types of the patient.
Abstract: Systems and methods are provided for allowing an implantable medical device, such as pacemaker, to properly sense electrophysiological signals and hemodynamic signals within a patient during a magnetic resonance imaging (MRI) procedure. Systems and methods are also provided for allowing the implantable medical device to transmit the sensed data to an external monitoring system during the MRI procedure so that attending medical personnel can closely monitor the health of the patient and the operation of the implantable device during the MRI. These improvements provide the attending personnel with information needed to determine whether the MRI should be suspended in response to induced tachyarrhythmias or other adverse conditions within the patient.
Abstract: In a possible implementation, a method for cardiac testing is provided which includes measuring test data associated with cardiac events and storing the test data in an intracardiac stimulation device. The method further includes acquiring event electrograms corresponding with the test data and storing the event electrograms corresponding with the test data in the intracardiac stimulation device. In a possible implementation, marker data is stored associating event electrograms with measured test data, which may identify the event electrograms used for measuring the test data and/or identify when adjacent event electrograms are not contiguous. In some implementations, the test data may be measured and stored in an out-of-clinic test, and the test data and the corresponding event electrograms may be later retrieved from the intracardiac stimulation device and presented on a visual display.
Type:
Grant
Filed:
August 28, 2006
Date of Patent:
September 4, 2012
Assignee:
Pacesetter, Inc.
Inventors:
Jennifer Rhude, Elia A. Mouchawar, David Houck, Gregory Hauck, Tejpal Singh, Monique Prue
Abstract: Techniques for detecting tachyarrhythmia and also for preventing T-wave oversensing use signals filtered by a narrowband bradycardia filter in combination with signals filtered by a narrowband tachycardia filter. A separate wideband filter may also be used.
Type:
Grant
Filed:
July 11, 2007
Date of Patent:
September 4, 2012
Assignee:
Pacesetter, Inc.
Inventors:
Rupinder Bharmi, Jeffery D. Snell, Gene A. Bornzin, Joseph J. Florio, Peter Boileau
Abstract: An implantable sensor is provided that includes a piezopolymer sensor element including a body having a plurality of layers of a piezopolymer, and an attachment device configured to hold the piezopolymer sensor element in direct contact with at least one of a bodily fluid and bodily tissue such that the piezopolymer sensor element is configured to bend in response to motion of the at least one of bodily fluid and bodily tissue. A pair of electrodes is attached to the piezopolymer sensor element and the electrodes are configured to collect an electrical charge that is generated within the piezopolymer sensor element due to the bending of the piezopolymer sensor element.
Abstract: Post-exercise arrhythmias are detected by an implantable medical device. In some aspects, post-exercise arrhythmia may be prognostic of a worsening cardiovascular condition. Thus, the detection of post-exercise arrhythmia may be used as an indicator for adjusting the therapy prescribed for a patient. In some aspects post-exercise arrhythmia are detected if a patient is exercising at a level that equals or exceeds a threshold exercise level. In some aspects, therapy for a patient is modified if the detected post-exercise arrhythmia exceeds a threshold arrhythmia level. In some aspects therapy for a patient is modified if ischemia is detected in conjunction with post-exercise arrhythmia.
Abstract: Techniques are provided for use with implantable medical devices for addressing encapsulation effects, particularly in the detection of cardiac decompensation events such as heart failure (HF) or cardiogenic pulmonary edema (PE.) In one example, during an acute interval following device implant, cardiac decompensation is detected using heart rate variability (HRV), ventricular evoked response (ER) or various other non-impedance-based parameters that are insensitive to component encapsulation effects. During the subsequent chronic interval, decompensation is detected using intracardiac or transthoracic impedance signals. In another example, the degree of maturation of encapsulation of implanted components is assessed using impedance frequency-response measurements or based on the frequency bandwidth of heart sounds or other physiological signals.
Type:
Application
Filed:
February 25, 2011
Publication date:
August 30, 2012
Applicant:
PACESETTER, INC.
Inventors:
Stuart Rosenberg, Cecilia Qin Xi, Yelena Nabutovsky, Brian Jeffrey Wenzel, Jong Gill, William Hsu