Patents Assigned to Pacesetter
  • Patent number: 8135456
    Abstract: Detection of atrial fibrillation involves detecting a plurality of ventricular events and obtaining a series of probabilities of AF, each corresponding to a probability of AF for a different beat window having a plurality of ventricular events. AF onset is detected when one or each of a plurality of consecutive AF probabilities satisfies an AF trigger threshold. AF termination is detected when one or each of a plurality of consecutive AF probabilities does not satisfy the AF trigger threshold. A probability of AF is obtained using one or more of a probability of AF that is based on the presence of irregularity of the ventricular events (PMC); a probability of AF that is based on variances of R-R intervals of the ventricular events (PVAR); and/or a combination of these probabilities (PCOMBINED).
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: March 13, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Jeffrey A. Haluska
  • Patent number: 8131361
    Abstract: An intrinsic inter-atrial conduction delay is determined by a pacemaker or implantable cardioverter-defibrillator based, at least in part, on far-field atrial events sensed using ventricular pacing/sensing leads. An atrioventricular pacing delay is then set based on the inter-atrial conduction delay. By detecting atrial events using ventricular leads, rather than using atrial leads, a more useful measurement of the intrinsic inter-atrial conduction delay can be obtained. In this regard, since atrial electrodes detect atrial activity locally around the electrodes, a near-field atrial event sensed using an atrial electrode might not properly represent the actual timing of the atrial event across both the right and left atria. Far-field atrial events sensed using ventricular leads thus allow for a more useful measurement of inter-atrial conduction delays for use in setting atrioventricular pacing delays.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 6, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Gene A. Bornzin
  • Patent number: 8128566
    Abstract: An enhanced intraluminal flow measurement system and method is conducive for a low-power ultrasonic system that can use continuous-wave (CW) Doppler sensing and wireless RF telemetry. Applications include measurement of blood flow in situ in living organisms. Implementations include an extraluminal component located outside of a body, such as a human or animal body, containing a lumen. The extraluminal component can be wirelessly coupled via an RF magnetic field or other RF field to an implantable intraluminal component. The intraluminal component (i.e. implant) is implanted inside of the lumen of the body such as a heart or elsewhere in a vasculature (such as in a dialysis shunt). The intraluminal component can telemeter, via RF electromagnetic signals, flow data directly out of the body housing the intraluminal component to be received by the extraluminal component.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 6, 2012
    Assignee: Pacesetter, Inc.
    Inventors: George W. Keilman, Leigh Bartlett, Timothy Johnson
  • Patent number: 8127618
    Abstract: The disclosure relates in some aspects to an implantable pressure sensor and a method of measuring pressure. In some embodiments pressure may be measured through the use of an implantable lead incorporating one or more pressure sensors. In some aspects a pressure sensor is implemented in a micro-electromechanical system (“MEMS”) that employs direct mechanical sensing. A biocompatible material is attached to one or more portions of the MEMS sensor to facilitate implant in a body of a patient. The MEMS sensor may thus be incorporated into an implantable lead for measuring blood pressure in, for example, one or more chambers of the patient's heart.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 6, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Yong D. Zhao, Apratim Dixit
  • Publication number: 20120053652
    Abstract: An implantable medical device includes a lead, a monitoring module, a multi-function conductive (MFC) coil, and a field detection module. The monitoring module identifies cardiac events based on the cardiac signals and directs stimulus pulses to be delivered to the heart through one or more electrodes connected to the lead. The MFC coil has an electric characteristic that varies based on exposure of the coil to an external magnetic field. The field detection module detects exposure of the coil to the external magnetic field by applying a field detection signal to the coil and identifying a change in the electric characteristic of the MFC coil. The field detection module switches operation of the monitoring module to an MR safe mode based on the change that is identified.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 1, 2012
    Applicant: PACESETTER, INC.
    Inventors: Ali Dianaty, Ramez Shehada
  • Patent number: 8126550
    Abstract: During a period of time comprising a plurality of cardiac cycles, a time relationship between ventricular events and atrial detections is established. Based on the relationship, a post-ventricular atrial refractory period is defined. The period includes an absolute atrial refractory period and a segmented relative atrial refractory period, wherein the segmented relative atrial refractory period includes at least one blanking window during which atrial detections of ventricular events have or are likely to occur.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: February 28, 2012
    Assignee: Pacesetter, Inc.
    Inventors: George E. Eisinger, Jeffery D. Snell, Gene A. Bornzin
  • Patent number: 8126552
    Abstract: An exemplary method includes delivering a cardiac pacing therapy that includes an atrio-ventricular delay and an interventricular delay, providing a paced propagation delay associated with delivery of a stimulus to a ventricle, delivering a stimulus to the ventricle, sensing an event in the other ventricle caused by the stimulus, determining an interventricular conduction delay value based on the delivering and the sensing, determining a interventricular delay (?Sur) based on the interventricular conduction delay and the paced propagation delay and determining an atrio-ventricular delay based at least in part on the interventricular delay (?Sur). Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: February 28, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Patent number: 8123716
    Abstract: An implantable cardiac therapeutic device having at least one implantable sensor arranged to sense at least one physiologic characteristic of a patient, an implantable therapeutic agent delivery assembly wherein the delivery assembly and a therapeutic agent to be delivered are configured for placement in a patient's pericardial space, and a controller in communication with the at least one implantable sensor and with the therapeutic agent delivery assembly wherein the controller evaluates the at least one physiologic characteristic for indications of a condition indicating administration of the therapeutic agent and wherein, upon detection of such indications, induces the therapeutic agent delivery assembly to deliver the agent.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 28, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Yougandh Chitre
  • Patent number: 8126557
    Abstract: An implantable medical lead is disclosed herein. In one embodiment, the lead includes a body, at least one electrode and a lead connector end. The body includes a distal portion and a proximal portion. The at least one electrode is on the distal portion. The lead connector end is on the proximal portion and includes a pin contact and a retainer assembly. The pin contact is electrically coupled to the at least one electrode and proximally extends from the lead connector end. The retainer assembly retains the pin contact as part of the lead connector end and includes a collar and a cap. The cap is secured within the collar via an interference fit arrangement and includes a hole through which the pin contact extends.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 28, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Grace Jang, Phong D. Doan, Steven R. Conger
  • Patent number: 8126546
    Abstract: A cardiac stimulation device has a plurality of electrodes that deliver therapeutic electrical stimulation to the heart. At least one electrode is designated a cathode that cathodically induces depolarization of the surrounding heart tissue. At least one electrode is designated an anode. The device is configured, through one or more of electrode size, electrode configuration, electrode arrangement, cathode/anode number and pulse delivery circuitry, to induce depolarization of the heart tissue in the area of the at least one anode electrode, thereby resulting in greater depolarization of the heart tissue with reduced power consumption.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 28, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Richard Williamson
  • Publication number: 20120046564
    Abstract: A system and method are provided for monitoring ischemic development. The system and method identify a non-physiologic event and obtain cardiac signals along multiple sensing vectors, wherein at least a portion of the sensing vectors extend to or from electrodes located proximate to the left ventricle. The system and method monitor a segment of interest in the cardiac signals obtained along the multiple sensing vectors to identify deviations in the segment of interest from a baseline. The system and method record at least one of timing or segment shift information associated with the deviations in the segments of interest; and identify at least one of size, direction of development or rate of progression of an ischemia region based on the at least one of timing or segment shift information.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Applicant: PACESETTER, INC.
    Inventors: Steve Koh, Michael Yang, Ryan Rooke, Stuart Rosenberg, Wenbo Hou
  • Publication number: 20120046528
    Abstract: A system for detecting and treating congestive heart failure includes an implantable module, such as a pacemaker, and a patient advisory module. The system is configured to measure thoracic impedance and to provide the patient with instructions in order to improve the accuracy of the thoracic impedance measurement as well as treating symptoms of congestive heart failure.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 23, 2012
    Applicant: PACESETTER, INC.
    Inventors: Neal L. Eigler, James S. Whiting, Brian M. Mann
  • Patent number: 8121675
    Abstract: Detection of atrial fibrillation involves detecting a plurality of ventricular events and obtaining a series of probabilities of AF, each corresponding to a probability of AF for a different beat window having a plurality of ventricular events. AF onset is detected when one or each of a plurality of consecutive AF probabilities satisfies an AF trigger threshold. AF termination is detected when one or each of a plurality of consecutive AF probabilities does not satisfy the AF trigger threshold. Upon detection of AF onset, ventricular events are processed to detect for a sudden onset of irregularity of the ventricular events. AF onset is confirmed when sudden onset is detected and overturned when sudden onset is not detected.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: February 21, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Cem Shaquer, Jong Gill, Fujian Qu
  • Patent number: 8121680
    Abstract: An implantable subcutaneous cardiac device includes at least two subcutaneous electrodes adapted for placement external to a heart beneath the skin of a patient. The device further includes an arrhythmia detector that detects a sustained tachyarrhythmia of the heart and a pulse generator that delivers anti-tachycardia pacing pulses to the subcutaneous electrodes in response to detection of a sustained tachyarrhythmia. The pacing pulses preferably have waveforms devoid of any exponential voltage decay and include rounded or substantially constant portions to minimize pain.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: February 21, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Eric Falkenberg, Mark W. Kroll, Gene A. Bornzin
  • Publication number: 20120041422
    Abstract: A method for accessing a target site in the body by transferring a guidewire from an initial insertion site on the body to a different insertion site on the body is provided. In one aspect, a method for transferring a medical device or component, such as a sensor lead, from an initial insertion site to another insertion site is also provided. A guidewire of sufficient length, pliancy and deformability to perform a transfer from one insertion site to another insertion site is provided. In one aspect, the guidewire comprises a removable core mandrel to increase rigidity, facilitate insertion and/or improve steerability. A kit or system, comprising introducers, guidewires and catheters for performing a guidewire or device transfer is also provided.
    Type: Application
    Filed: September 29, 2011
    Publication date: February 16, 2012
    Applicant: PACESETTER, INC.
    Inventors: James S. Whiting, Neal L. Eigler, Brian M. Mann, Werner Hafelfinger
  • Patent number: 8115640
    Abstract: Exemplary systems and methods for automatically managing implantable medical device (IMD) related alerts are described. One method receives implantable medical device-related alerts. The method automatically manages the implantable medical device alerts by parsing the alerts through a set of predefined parameters.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: February 14, 2012
    Assignee: Pacesetter, Inc.
    Inventor: George L. Walls
  • Publication number: 20120035495
    Abstract: Various techniques are provided for use with an implantable medical device for exploiting near-field impedance/admittance. Examples include techniques for assessing heart chamber disequilibrium, detecting chamber volumes and pressures, calibrating near-field-based left atrial pressure (LAP) estimation procedures and for assessing the recovery from injury at the electrode-tissue interface. In one particular example, the implantable device assesses the degree of concordance between the left ventricle (LV) and the right ventricle (RV) by quantifying a degree of scatter between LV and RV near-field admittance values. An increase in RV admittance is indicative of RV failure, an increase in LV admittance is indicative of LV failure, and an increase in both LV and RV admittance is indicative of biventricular failure.
    Type: Application
    Filed: January 14, 2011
    Publication date: February 9, 2012
    Applicant: PACESETTER, INC.
    Inventors: Dan E. Gutfinger, Fujian Qu, Alex Soriano, Ryan Rooke, Yelena Nabutovsky, Riddhi Shah
  • Publication number: 20120035493
    Abstract: A new model is provided for understanding and exploiting impedance or admittance values measured by implantable medical devices, such as pacemakers or cardiac resynchronization devices (CRTs.) The device measures impedance along vectors extending through tissues of the patient between various pairs of electrodes. The device then converts the vector-based impedance measurements into near-field individual electrode-based impedance values. This is accomplished, in at least some examples, by converting the vector-based impedance measurements into a set of linear equations to be solved while ignoring far-field contributions to the impedance measurements. The device solves the linear equations to determine the near-field impedance values for the individual electrodes, which are representative of the impedance of tissues in the vicinity of the electrodes.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: PACESETTER, INC.
    Inventors: Dan E. Gutfinger, Fujian Qu, Alex Soriano, Ryan Rooke, Yelena Nabutovsky, Riddhi Shah, Andreas Blomqvist
  • Publication number: 20120035681
    Abstract: Various techniques are provided for use with an implantable medical device for estimating cardiac pressure within a patient based on admittance (or related electrical values such as impedance or conductance) that takes into account the presence of acute MR within the patient. Briefly, the device detects an indication of acute MR, if occurring within the patient. The device also applies electrical fields to tissues of the patient and measures electrical parameters influenced by the electrical field, such as admittance, impedance or conductance. The device then estimates cardiac pressure within the patient based on the measured electrical parameter and the indication of acute MR. In one example, different linear correlation functions are used to convert admittance values to left atrial pressure (LAP) values depending upon the presence or absence of acute MR within the patient.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: PACESETTER, INC.
    Inventors: Dan E. Gutfinger, Fujian Qu, Alex Soriano, Ryan Rooke, Yelena Nabutovsky, Riddhi Shah
  • Publication number: 20120035590
    Abstract: A method for accessing a target site in the body by transferring a guidewire from an initial insertion site on the body to a different insertion site on the body is provided. In one aspect, a method for transferring a medical device or component, such as a sensor lead, from an initial insertion site to another insertion site is also provided. A guidewire of sufficient length, pliancy and deformability to perform a transfer from one insertion site to another insertion site is provided. In one aspect, the guidewire comprises a removable core mandrel to increase rigidity, facilitate insertion and/or improve steerability. A kit or system, comprising introducers, guidewires and catheters for performing a guidewire or device transfer is also provided.
    Type: Application
    Filed: September 29, 2011
    Publication date: February 9, 2012
    Applicant: PACESETTER, INC.
    Inventors: James S. Whiting, Neal L. Eigler, Brian M. Mann, Werner Hafelfinger