Patents Assigned to Pacific Biosciences of California, Inc.
  • Patent number: 9587276
    Abstract: Substrates, systems and methods for analyzing materials that include waveguide arrays disposed upon or within the substrate such that evanescent fields emanating from the waveguides illuminate materials disposed upon or proximal to the surface of the substrate, permitting analysis of such materials. The substrates, systems and methods are used in a variety of analytical operations, including, inter alia, nucleic acid analysis, including hybridization and sequencing analyses, cellular analyses and other molecular analyses.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: March 7, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Paul Lundquist, Stephen Turner
  • Patent number: 9582640
    Abstract: Methods obtaining a single molecule consensus sequence for a single template molecule, and for obtaining a plurality of single molecule consensus sequences for a plurality of single template molecules is provided. Template molecules having two complementary regions connected with a linker are sequenced. A single read from each template molecule can be obtained, the read containing sequence information for each of the complementary regions. Single molecule consensus sequences can be determined from these reads by comparing the sequence information of the two complementary regions.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 28, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Kevin Travers, Geoff Otto, Stephen Turner, Cheryl Heiner, Congcong Ma
  • Patent number: 9556480
    Abstract: Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: January 31, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jon Sorenson, Kenneth Mark Maxham, John Eid
  • Patent number: 9556479
    Abstract: Compositions that include polymerases with features for improving entry of nucleotide analogues into active site regions and for coordinating with the nucleotide analogues in the active site region are provided. Methods of making the polymerases and of using the polymerases in sequencing and DNA replication and amplification as well as kinetic models of polymerase activity and computer-implemented methods of using the models are also provided.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: January 31, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: David K. Hanzel, Geoff Otto, Paul Peluso, Thang Pham, David R. Rank, Paul Mitsis, Fred Christians, Arekadiusz Bibillo, Insil Park, Sonya Clark, John Lyle
  • Patent number: 9551031
    Abstract: Nucleic acid compositions, methods of making and using such compositions that comprise modular functional groups that can be configured to provide desired functionality to different nucleotide types through a swappable and preferably non-covalent linkage component. Such compositions are useful in a variety of applications including nucleic acid analyses.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 24, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Jeffrey Wegener
  • Patent number: 9551030
    Abstract: An approach to the design of the set of filters which allows for the collection of a larger portion of the optical signal while still distinguishing the presence of the various fluorophores is described. In some embodiments, the filter sets of the invention each block a smaller portion of the spectrum, allowing for a larger portion of the emitted light to be detected. The combined information from the light passing through two or more of the filters is then used to determine the presence of a given fluorophore. The filter sets of the invention can be particularly useful in integrated devices in which the light from a single molecule reaction in a small reaction region is directed to a detector or to a specific portion of a detector.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: January 24, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Mark McDonald
  • Patent number: 9551660
    Abstract: FRET-labeled compounds are provided for use in analytical reactions. In certain embodiments, FRET-labeled nucleotide analogs are used in place of naturally occurring nucleoside triphosphates or other analogs in analytical reactions comprising nucleic acids, for example, template-directed nucleic acid synthesis, DNA sequencing, RNA sequencing, single-base identification, hybridization, binding assays, and other analytical reactions.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 24, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Xiangxu Kong, Gene Shen
  • Patent number: 9551028
    Abstract: Provided are methods for sequencing a nucleic acid with a sequencing enzyme, e.g., a polymerase or exonuclease. The sequencing enzyme can optionally be exchanged with a second sequencing enzyme, which continues the sequencing of the nucleic acid. In certain embodiments, a template is fixed to a surface through a template localizing moiety. The template localizing moiety can optionally anneal with the nucleic acid and/or associate with the sequencing enzyme. Also provided are compositions comprising a nucleic acid and a first sequencing enzyme, which can sequence the nucleic acid and optionally exchange with a second sequencing enzyme present in the composition. Compositions in which a template localizing moiety is immobilized on a surface are provided. Also provided are methods for using data from analytical reactions wherein two different enzymes are employed, e.g., at a same or different reaction regions.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: January 24, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Keith Bjornson, Arek Bibillo, Fred Christians, Kevin Travers, Robin Emig, Stephen Turner
  • Patent number: 9546400
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention provides for using the signals from n-mers to provide sequence information, for example where the system has less than single base resolution. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 17, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Benjamin Flusberg
  • Patent number: 9542527
    Abstract: Compositions and methods for nucleic acid sequencing include template constructs that comprise double stranded portions in a partially or completely contiguous constructs, to provide for redundant sequence determination through one or both of sequencing sense and antisense strands, and iteratively sequencing the entire construct multiple times. Additional sequence components are also optionally included within such template constructs. Methods are also provided for the use and preparation of these constructs as well as sequencing compositions for their application.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: January 10, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Kevin Travers, Geoff Otto, Stephen Turner, Cheryl Heiner, Congcong Ma
  • Patent number: 9528107
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a target region, which is typically located within one or more target fragments. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: December 27, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Thang Tat Pham, Yu-Chih Tsai, Jonas Korlach, Tyson A. Clark, Stephen Turner
  • Patent number: 9499862
    Abstract: In various embodiments, the present invention provides fluorescent dyes that are linked to another species through an amino acid or peptide linker. In an exemplary embodiment, the dye is linked to a polyphosphate nucleic acid through an amino acid or peptide linker. These conjugates find use in single molecule DNA sequencing and other applications. In various embodiments, the dye moiety is a cyanine dye. Cyanine dyes that are highly charged, such as those including multiple sulfonate, alkylsulfonate, carboxylate and/or alkylcarboxylate moieties are examples of cyanine dyes of use in the compounds of the invention.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: November 22, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventor: Gene Shen
  • Patent number: 9488584
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: November 8, 2016
    Assignee: Pacific Bioscience of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen
  • Publication number: 20160310926
    Abstract: The present invention provides methods, compositions, and systems for distributing single polymerase molecules into array regions. In particular, the methods, compositions, and systems of the present invention result in a distribution of single polymerase molecules into array regions at a percentage that is larger than the percentage expected to be occupied under a Poisson distribution.
    Type: Application
    Filed: March 23, 2016
    Publication date: October 27, 2016
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Lei SUN, Natasha Popovich, Gene Shen, Thang Pham, Stephen Turner
  • Patent number: 9476035
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties include increased resistance to photodamage, and can also include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: October 25, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Arek Bibillo, Walter Lee, Erik Miller, Insil Park
  • Patent number: 9475054
    Abstract: Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Hook oligonucleotides are used to capture polymerase nucleic acid complexes where the nucleic acids comprise circular nucleic acids having a double stranded central region with hairpin regions on each end. Methods for loading such complexes onto substrates and for single molecule sequencing of such complexes are also provided.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: October 25, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Thang Pham, Arunashree Bhamidipati, Kevin Travers, Eric Olivares, Tyson A. Clark, Jonas Korlach
  • Patent number: 9464107
    Abstract: Labeled reactant compositions, and particularly labeled nucleic acid reaction compositions that include structural components including double-stranded nucleic acids. In some embodiments, the structural components maintain potentially damaging labeling components sufficiently distal from the reactant portion of the molecule such that damaging effects of the label group on other reaction components, such as enzymes, are reduced, minimized and/or eliminated.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: October 11, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jeffrey Wegener, Jonas Korlach
  • Patent number: 9447464
    Abstract: Methods, Compositions, and Systems are provided for nucleic acid sequencing where the sequential incorporation of nucleotides uses two distinct chemical steps. A plurality of nucleotide analogs, each having a labeled leaving group at its 3? hydroxyl can be sequentially added to a growing strand in the presence of a selective cleaving activity that cleaves the 3? hydroxyl leaving group preferentially after it has been incorporated. The selective cleaving agent can comprise an exonuclease activity, and the exonuclease activity can be a polymerase-associated exonuclease activity. Nucleotide analogs having labels on both a cleavable polyphosphate portion and on a 3? hydroxyl leaving group can provide signals characteristic of nucleotide analog incorporation. Systems having illumination optics, collection optics, and substrates observe signals from the labels as they are being incorporated into a growing nucleic acid strand, allowing for the sequencing of template nucleic acids.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: September 20, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Robin Emig, Lei Jia, Jeremiah Hanes, Lubomir Sebo
  • Patent number: 9441270
    Abstract: The invention provides a novel class of cyanine dyes that are functionalized with sulfonic acid groups and a linker moiety that facilitates their conjugation to other species and substituent groups which increase the water-solubility, and optimize the optical properties of the dyes. Also provided are conjugates of the dyes, methods of using the dyes and their conjugates and kits including the dyes and their conjugates.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: September 13, 2016
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Yue, Gene Shen, Wei-Chuan (David) Sun
  • Publication number: 20160237279
    Abstract: Multimeric protected fluorescent reagents and their methods of synthesis are provided. The reagents are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The reagents contain fluorescent dye elements, that allow the compounds to be detected with high sensitivity at desirable wavelengths, binding elements, that allow the compounds to be recognized specifically by target biomolecules, and protective shield elements, that decrease undesirable contacts between the fluorescent dye elements and the bound target biomolecules and that therefore decrease photodamage of the bound target biomolecules by the fluorescent dye elements. The reagents also contain coupling elements connect monomeric compounds into multimeric forms, thereby increasing brightness.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 18, 2016
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Frank ZHENG, Jeremiah HANES, Gene SHEN, Louis BROGLEY, Stephen YUE, Yuri LAPIN, John LYLE, Honey OSUNA, Andrei FEDOROV, Lubomir SEBO